Interorbital singlet pairing in Sr2RuO4: A Hund?s superconductor

被引:17
作者
Kaeser, Stefan [1 ,2 ]
Strand, Hugo U. R. [3 ,4 ,5 ]
Wentzell, Nils [5 ]
Georges, Antoine [5 ,6 ,7 ,8 ]
Parcollet, Olivier [5 ,9 ]
Hansmann, Philipp [2 ,10 ]
机构
[1] Max Planck Inst Festkorperforsch, Heisenbergstr 1, D-70569 Stuttgart, Germany
[2] Friedrich Alexander Univ Erlangen Nurnberg, Dept Phys, D-91058 Erlangen, Germany
[3] Orebro Univ, Sch Sci & Technol, Fakultetsgatan 1, SE-70182 Orebro, Sweden
[4] Chalmers Univ Technol, Dept Phys, SE-41296 Gothenburg, Sweden
[5] Simons Fdn, Flatiron Inst, Ctr Computat Quantum Phys, 162 5th Ave, New York, NY 10010 USA
[6] Coll France, 11 Pl Marcelin Berthelot, F-75005 Paris, France
[7] Ecole Polytech, IP Paris, CPHT, CNRS, F-91128 Palaiseau, France
[8] Univ Geneva, DQMP, 24 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
[9] Univ Paris Saclay, CNRS, Inst Phys Theor, CEA, F-91191 Gif Sur Yvette, France
[10] Max Planck Inst Chem Phys Fester Stoffe, Nothnitzerstr 40, D-01187 Dresden, Germany
关键词
TIME-REVERSAL;
D O I
10.1103/PhysRevB.105.155101
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the superconducting gap function of Sr2RuO4. By solving the linearized Eliashberg equation with a correlated pairing vertex extracted from a dynamical mean-field calculation we identify the dominant pairing channels. An analysis of the candidate gap functions in orbital and quasiparticle band basis reveals that an interorbital singlet pairing of even parity is in agreement with experimental observations. It reconciles in particular the occurrence of a two-component order parameter with the presence of line nodes of quasiparticles along the c axis in the superconducting phase. The strong angular dependence of the gap along the Fermi surface is in stark contrast to its quasilocality when expressed in the orbital basis. We identify local interorbital spin correlations as the driving force for the pairing and thus reveal the continuation of Hund???s physics into the superconducting phase.
引用
收藏
页数:18
相关论文
共 90 条
[1]  
Abrikosov A.A., 1975, Methods of Quantum Field Theory in Statistical Physics
[2]  
Acharya S, 2019, COMMUN PHYS-UK, V2, DOI 10.1038/s42005-019-0254-1
[3]  
[Anonymous], 2013, THESIS TU WIEN
[4]   NEW CLASS OF SINGLET SUPERCONDUCTORS WHICH BREAK TIME-REVERSAL AND PARITY [J].
BALATSKY, A ;
ABRAHAMS, E .
PHYSICAL REVIEW B, 1992, 45 (22) :13125-13128
[5]   Ultrasound evidence for a two-component superconducting order parameter in Sr2RuO4 [J].
Benhabib, S. ;
Lupien, C. ;
Paul, I. ;
Berges, L. ;
Dion, M. ;
Nardone, M. ;
Zitouni, A. ;
Mao, Z. Q. ;
Maeno, Y. ;
Georges, A. ;
Taillefer, L. ;
Proust, C. .
NATURE PHYSICS, 2021, 17 (02) :194-+
[6]  
Berezinskii V. L., 1974, Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki, Pis'ma v Redaktsiyu, V20, P628
[7]   Quasi-two-dimensional Fermi liquid properties of the unconventional superconductor Sr2RuO4 [J].
Bergemann, C ;
Mackenzie, AP ;
Julian, SR ;
Forsythe, D ;
Ohmichi, E .
ADVANCES IN PHYSICS, 2003, 52 (07) :639-725
[8]   Odd triplet superconductivity and related phenomena in superconductor-ferromagnet structures [J].
Bergeret, FS ;
Volkov, AF ;
Efetov, KB .
REVIEWS OF MODERN PHYSICS, 2005, 77 (04) :1321-1373
[9]   Self-consistent many-body theory for condensed matter systems [J].
Bickers, NE .
THEORETICAL METHODS FOR STRONGLY CORRELATED ELECTRONS, 2004, :237-296
[10]  
Blaha P., 2018, AUGMENTED PLANE WAVE