Li metal deposition and stripping in a solid-state battery via Coble creep

被引:253
作者
Chen, Yuming [1 ,2 ,3 ]
Wang, Ziqiang [1 ,2 ]
Li, Xiaoyan [1 ,2 ,3 ,4 ]
Yao, Xiahui [1 ,2 ]
Wang, Chao [1 ,2 ]
Li, Yutao [5 ,6 ]
Xue, Weijiang [1 ,2 ]
Yu, Daiwei [7 ]
Kim, So Yeon [1 ,2 ]
Yang, Fei [1 ,2 ]
Kushima, Akihiro [8 ]
Zhang, Guoge [4 ]
Huang, Haitao [4 ]
Wu, Nan [5 ,6 ]
Mai, Yiu-Wing [9 ]
Goodenough, John B. [5 ,6 ]
Li, Ju [1 ,2 ]
机构
[1] MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[3] Fujian Normal Univ, Coll Environm Sci & Engn, Fuzhou, Peoples R China
[4] Hong Kong Polytech Univ, Dept Appl Phys, Hong Kong, Peoples R China
[5] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA
[6] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA
[7] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[8] Univ Cent Florida, Adv Mat Proc & Anal Ctr, Dept Mat Sci & Engn, Orlando, FL 32816 USA
[9] Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Ctr Adv Mat Technol, Sydney, NSW, Australia
关键词
BLOCK-COPOLYMER ELECTROLYTE; LITHIUM METAL; ANODE MATERIALS; HIGH-CAPACITY; GROWTH;
D O I
10.1038/s41586-020-1972-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Solid-state lithium metal batteries require accommodation of electrochemically generated mechanical stress inside the lithium: this stress can be(1,2) up to 1 gigapascal for an overpotential of 135 millivolts. Maintaining the mechanical and electrochemical stability of the solid structure despite physical contact with moving corrosive lithium metal is a demanding requirement. Using in situ transmission electron microscopy, we investigated the deposition and stripping of metallic lithium or sodium held within a large number of parallel hollow tubules made of a mixed ionic-electronic conductor (MIEC). Here we show that these alkali metals-as single crystals-can grow out of and retract inside the tubules via mainly diffusional Coble creep along the MIEC/metal phase boundary. Unlike solid electrolytes, many MIECs are electrochemically stable in contact with lithium (that is, there is a direct tie-line to metallic lithium on the equilibrium phase diagram), so this Coble creep mechanism can effectively relieve stress, maintain electronic and ionic contacts, eliminate solid-electrolyte interphase debris, and allow the reversible deposition/stripping of lithium across a distance of 10 micrometres for 100 cycles. A centimetre-wide full cell-consisting of approximately 10(10) MIEC cylinders/solid electrolyte/LiFePO4-shows a high capacity of about 164 milliampere hours per gram of LiFePO4, and almost no degradation for over 50 cycles, starting with a 1x excess of Li. Modelling shows that the design is insensitive to MIEC material choice with channels about 100 nanometres wide and 10-100 micrometres deep. The behaviour of lithium metal within the MIEC channels suggests that the chemical and mechanical stability issues with the metal-electrolyte interface in solid-state lithium metal batteries can be overcome using this architecture. By containing lithium metal within oriented tubes of a mixed ionic-electronic conductor, a 3D anode for lithium metal batteries is produced that overcomes chemomechanical stability issues at the electrolyte interface.
引用
收藏
页码:251 / +
页数:8
相关论文
共 38 条
[1]   BREAKDOWN OF BETA-ALUMINA CERAMIC ELECTROLYTE [J].
ARMSTRONG, RD ;
DICKINSO.T ;
TURNER, J .
ELECTROCHIMICA ACTA, 1974, 19 (05) :187-192
[2]  
Ashby M.F., 1982, DEFORMATION MECH MAP
[3]   Mechanical properties characterization of two-dimensional materials via nanoindentation experiments [J].
Cao, Guoxin ;
Gao, Huajian .
PROGRESS IN MATERIALS SCIENCE, 2019, 103 (558-595) :558-595
[4]   Nitrogen-Doped Carbon for Sodium-Ion Battery Anode by Self-Etching and Graphitization of Bimetallic MOF-Based Composite [J].
Chen, Yuming ;
Li, Xiaoyan ;
Park, Kyusung ;
Lu, Wei ;
Wang, Chao ;
Xue, Weijiang ;
Yang, Fei ;
Zhou, Jiang ;
Suo, Liumin ;
Lin, Tianquan ;
Huang, Haitao ;
Li, Ju ;
Goodenough, John B. .
CHEM, 2017, 3 (01) :152-163
[5]   Failure Mode of Lithium Metal Batteries with a Block Copolymer Electrolyte Analyzed by X-Ray Microtomography [J].
Devaux, Didier ;
Harry, Katherine J. ;
Parkinson, Dilworth Y. ;
Yuan, Rodger ;
Hallinan, Daniel T. ;
MacDowell, Alastair A. ;
Balsara, Nitash P. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (07) :A1301-A1309
[6]   Radiation damage in the TEM and SEM [J].
Egerton, RF ;
Li, P ;
Malac, M .
MICRON, 2004, 35 (06) :399-409
[7]  
Gjostein N.A., 1973, Diffusion
[8]   Electrochemical Deposition and Stripping Behavior of Lithium Metal across a Rigid Block Copolymer Electrolyte Membrane [J].
Harry, Katherine J. ;
Liao, Xunxun ;
Parkinson, Dilworth Y. ;
Minor, Andrew M. ;
Balsara, Nitash P. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (14) :A2699-A2706
[9]  
Harry KJ, 2014, NAT MATER, V13, P69, DOI [10.1038/NMAT3793, 10.1038/nmat3793]
[10]   3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries [J].
Jin, Chengbin ;
Sheng, Ouwei ;
Luo, Jianmin ;
Yuan, Huadong ;
Fang, Cong ;
Zhang, Wenkui ;
Huang, Hui ;
Gan, Yongping ;
Xia, Yang ;
Liang, Chu ;
Zhang, Jun ;
Tao, Xinyong .
NANO ENERGY, 2017, 37 :177-186