A SINGULAR LIMIT PROBLEM FOR THE IBRAGIMOV-SHABAT EQUATION

被引:1
作者
Coclite, Giuseppe Maria [1 ]
di Ruvo, Lorenzo [2 ]
机构
[1] Univ Bari, Dept Math, Via E Orabona 4, I-70125 Bari, Italy
[2] Univ Modena & Reggio Emilia, Dept Sci & Methods Engn, Via G Amendola 2, I-42122 Reggio Emilia, Italy
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2016年 / 9卷 / 03期
关键词
Singular limit; compensated compactness; Ibragimov-Shabat equation; entropy condition; NONLINEAR EVOLUTION-EQUATIONS; CONSERVATION-LAWS; BACKLUND-TRANSFORMATIONS; CONVERGENCE;
D O I
10.3934/dcdss.2016020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Ibragimov-Shabat equation, which contains non-linear dispersive effects. We prove that as the diffusion parameter tends to zero, the solutions of the dispersive equation converge to discontinuous weak solutions of a scalar conservation law. The proof relies on deriving suitable a priori estimates together with an application of the compensated compactness method in the L-P setting.
引用
收藏
页码:661 / 673
页数:13
相关论文
共 27 条
[1]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[2]  
[Anonymous], APPL ANAL
[3]  
BEALS R, 1989, STUD APPL MATH, V81, P125
[4]  
Coclite G. M., ANN MAT PUR IN PRESS
[5]   A singular limit problem for conservation laws related to the Camassa-Holm shallow water equation [J].
Coclite, Giuseppe Maria ;
Hvistendahl Karlsen, Kenneth .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2006, 31 (08) :1253-1272
[6]   Well-posedness results for the short pulse equation [J].
Coclite, Giuseppe Maria ;
di Ruvo, Lorenzo .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (04) :1529-1557
[7]   CONVERGENCE OF VANISHING CAPILLARITY APPROXIMATIONS FOR SCALAR CONSERVATION LAWS WITH DISCONTINUOUS FLUXES [J].
Coclite, Giuseppe Maria ;
di Ruvo, Lorenzo ;
Ernest, Jan ;
Mishra, Siddhartha .
NETWORKS AND HETEROGENEOUS MEDIA, 2013, 8 (04) :969-984
[8]   BACKLUND TRANSFORMATIONS FOR AKNS INVERSE METHOD [J].
DODD, RK ;
BULLOUGH, RK .
PHYSICS LETTERS A, 1977, 62 (02) :70-74
[9]  
Eisenhart Luther Pfahler, 1960, TREATISE DIFFERENTIA
[10]  
GOURSAT E, 1925, MEMORIAL SCI MATH