Metric wave approach to flexoelectricity within density functional perturbation theory

被引:16
作者
Schiaffino, Andrea [1 ]
Dreyer, Cyrus E. [2 ,3 ,4 ]
Vanderbilt, David [2 ]
Stengel, Massimiliano [1 ,5 ]
机构
[1] Inst Ciencia Mat Barcelona ICMAB CSIC, Campus UAB, Bellaterra 08193, Spain
[2] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08845 USA
[3] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
[4] Flatiron Inst, Ctr Computat Quantum Phys, 162 5th Ave, New York, NY 10010 USA
[5] ICREA, Barcelona 08010, Spain
基金
欧洲研究理事会;
关键词
PSEUDOPOTENTIALS; SOLIDS;
D O I
10.1103/PhysRevB.99.085107
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Within the framework of density functional perturbation theory, we implement and test a "metric wave" response-function approach. It consists in the reformulation of an acoustic phonon perturbation in the curvilinear frame that is comoving with the atoms. This means that all the perturbation effects are encoded in the first-order variation of the real-space metric, while the atomic positions remain fixed. This approach can be regarded as the generalization of the uniform strain perturbation of Hamann et al. [D. R. Hamann, X. Wu, K. M. Rabe, and D. Vanderbilt, Phys. Rev. B 71, 035117 (2005)] to the case of inhomogeneous deformations, and greatly facilitates the calculation of advanced electromechanical couplings such as the flexoelectric tensor. We demonstrate the accuracy of our approach with extensive tests on model systems and on bulk crystals of Si and SrTiO3.
引用
收藏
页数:14
相关论文
共 50 条
[11]   Flexoelectricity in ATiO3 (A = Sr, Ba, Pb perovskite oxide superlattices from density functional theory [J].
Plymill, Austin ;
Xu, Haixuan .
JOURNAL OF APPLIED PHYSICS, 2018, 123 (14)
[12]   The phonon spectra of LiH and LiD from density-functional perturbation theory [J].
Roma, G ;
Bertoni, CM ;
Baroni, S .
SOLID STATE COMMUNICATIONS, 1996, 98 (03) :203-207
[13]   Implementation of density functional embedding theory within the projector-augmented-wave method and applications to semiconductor defect states [J].
Yu, Kuang ;
Libisch, Florian ;
Carter, Emily A. .
JOURNAL OF CHEMICAL PHYSICS, 2015, 143 (10)
[14]   Self-consistent Hubbard parameters from density-functional perturbation theory in the ultrasoft and projector-augmented wave formulations [J].
Timrov, Iurii ;
Marzari, Nicola ;
Cococcioni, Matteo .
PHYSICAL REVIEW B, 2021, 103 (04)
[15]   HP - A code for the calculation of Hubbard parameters using density-functional perturbation theory [J].
Timrov, Iurii ;
Marzari, Nicola ;
Cococcioni, Matteo .
COMPUTER PHYSICS COMMUNICATIONS, 2022, 279
[16]   Two-component density functional theory within the projector augmented-wave approach: Accurate and self-consistent computations of positron lifetimes and momentum distributions [J].
Wiktor, Julia ;
Jomard, Gerald ;
Torrent, Marc .
PHYSICAL REVIEW B, 2015, 92 (12)
[17]   Projector Augmented Wave Method Incorporated into Gauss-Type Atomic Orbital Based Density Functional Theory [J].
Xiong, Xiao-Gen ;
Yanai, Takeshi .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2017, 13 (07) :3236-3249
[18]   Fast and scalable finite-element based approach for density functional theory calculations using projector augmented wave method [J].
Ramakrishnan, Kartick ;
Das, Sambit ;
Motamarri, Phani .
PHYSICAL REVIEW B, 2025, 111 (03)
[19]   Real-space pseudopotential method for noncollinear magnetism within density functional theory [J].
Naveh, Doron ;
Kronik, Leeor .
SOLID STATE COMMUNICATIONS, 2009, 149 (3-4) :177-180
[20]   Generalized density functional theory [J].
Khein, A ;
Ashcroft, NW .
PHYSICAL REVIEW LETTERS, 1997, 78 (17) :3346-3349