Brain stem - from general view to computational model based on switchboard rules of operation

被引:2
作者
Duch, Wlodzislaw [1 ]
Mikolajewski, Dariusz [2 ,3 ]
机构
[1] Nicolaus Copernicus Univ, Dept Informat, Ul Grudziadzka 5, PL-87100 Torun, Poland
[2] Nicolaus Copernicus Univ, Neurocognit Lab, Ctr Modern Interdisciplinary Technol, Ul Wilenska 4, PL-87100 Torun, Poland
[3] Kazimierz Wielki Univ, Inst Informat, Ul Kopernika 1, PL-85074 Bydgoszcz, Poland
关键词
activation; brain stem; computational model; CONSCIOUSNESS; ANATOMY; WORLD;
D O I
10.1515/bams-2019-0059
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Despite great progress in understanding the functions and structures of the central nervous system (CNS) the brain stem remains one of the least understood systems. We know that the brain stem acts as a decision station preparing the organism to act in a specific way, but such functions are rather difficult to model with sufficient precision to replicate experimental data due to the scarcity of data and complexity of large-scale simulations of brain stem structures. The approach proposed in this article retains some ideas of previous models, and provides more precise computational realization that enables qualitative interpretation of the functions played by different network states. Simulations are aimed primarily at the investigation of general switching mechanisms which may be executed in brain stem neural networks, as far as studying how the aforementioned mechanisms depend on basic neural network features: basic ionic channels, accommodation, and the influence of noise.
引用
收藏
页数:10
相关论文
共 29 条
[1]  
Babadi B, 2004, NEUROCOMPUTING, V58, P7, DOI 10.1016/j.neucom.2004.01.015
[2]   Dynamics of excitatory networks of bursting pacemaking neurons: Modeling and experimental studies of the respiratory central pattern generator [J].
Butera, RJ ;
Johnson, SM ;
DelNegro, CA ;
Rinzel, J ;
Smith, JC .
NEUROCOMPUTING, 2000, 32 :323-330
[3]  
Cvetkovic D, 2011, EXPT INSIGHTS MEDITA
[4]  
Damasio A., 2010, Self Comes to Mind
[5]   Understanding neurodynamical systems via Fuzzy Symbolic Dynamics [J].
Dobosz, Krzysztof ;
Duch, Wiodzislaw .
NEURAL NETWORKS, 2010, 23 (04) :487-496
[6]  
Duch W, 2008, FRONTIERS ARTIFICIAL
[7]   Visualization for understanding of neurodynamical systems [J].
Duch, Wlodzislaw ;
Dobosz, Krzysztof .
COGNITIVE NEURODYNAMICS, 2011, 5 (02) :145-160
[8]   L-plotting-A method for visual analysis of physiological experimental and modeling multi-component data [J].
Dunin-Barkowski, W. L. ;
Lovering, A. T. ;
Orem, J. M. ;
Baekey, D. M. ;
Dick, T. E. ;
Rybak, I. A. ;
Morris, K. F. ;
O'Connor, R. ;
Nuding, S. C. ;
Shannon, R. ;
Lindsey, B. G. .
NEUROCOMPUTING, 2010, 74 (1-3) :328-336
[9]   Role of infraslow (0-0.5 Hz) potential oscillations in the regulation of brain stress response by the locus coeruleus system [J].
Filippov, IV ;
Gladyshev, AV ;
Williams, WC .
NEUROCOMPUTING, 2002, 44 :795-798
[10]   A world survey of artificial brain projects, Part II Biologically inspired cognitive architectures [J].
Goertzel, Ben ;
Lian, Ruiting ;
Arel, Itamar ;
de Garis, Hugo ;
Chen, Shuo .
NEUROCOMPUTING, 2010, 74 (1-3) :30-49