Concurrent non-malleable zero-knowledge (CNMZK) protocols are zeroknowledge protocols that provides security even when adversaries interact with multiple provers and verifiers simultaneously. It is known that CNMZK arguments for NP can be constructed in the plain model. Furthermore, it was recently shown that statistical CNMZK arguments for NP can also be constructed in the plain model. However, although the former requires only the existence of one-way functions, the latter requires the DDH assumption. In this paper, we construct a statistical CNMZK argument for NP assuming only the existence of one-way functions. The security is proven via black-box simulation, and the round complexity is poly(n). Under the existence of collision-resistant hash functions, the round complexity is reduced to omega(log n), which is essentially optimal for black-box concurrent zero-knowledge protocols.