Cartan decomposition of SU(2n) and control of spin systems

被引:163
作者
Khaneja, N [1 ]
Glaser, SJ
机构
[1] Dartmouth Coll, Dept Math, Hanover, NH 03755 USA
[2] Tech Univ Munich, Inst Organ Chem & Biochem 2, D-85747 Garching, Germany
关键词
D O I
10.1016/S0301-0104(01)00318-4
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, we give an explicit parameterization of any arbitrary unitary transformation on n qubits, in terms of one qubit and two qubit operations. Building on the previous work demonstrating the universality of two qubit quantum gates, we present here an explicit construction The construction is based on the Cartan decomposition of the semi-simple Lie group SU(2(n)), and uses the geometric structure of the Riemannian symmetric space SU(2(n))/ SU(2(n-1)) circle times SU(2(n-1)) circle times U(1). This decomposition highlights the geometric aspects of the problem of building an arbitrary unitary transformation out of quantum gates and makes explicit the structure of pulse sequences for its approximate implementation in a network of n coupled 1/2 spins. Further work needs to be done to relate the parameters in our decomposition to other standard parameterization of SU(2(n)), in order to find explicit pulse sequences for synthesizing unitary transformations expressed in the standard parameterization of SU(2(n)). (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:11 / 23
页数:13
相关论文
共 33 条
[1]   ELEMENTARY GATES FOR QUANTUM COMPUTATION [J].
BARENCO, A ;
BENNETT, CH ;
CLEVE, R ;
DIVINCENZO, DP ;
MARGOLUS, N ;
SHOR, P ;
SLEATOR, T ;
SMOLIN, JA ;
WEINFURTER, H .
PHYSICAL REVIEW A, 1995, 52 (05) :3457-3467
[2]  
BROCKETT RW, 1999, STOCHASTIC CONTROL Q
[3]   Ensemble quantum computing by NMR spectroscopy [J].
Cory, DG ;
Fahmy, AF ;
Havel, TF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (05) :1634-1639
[4]   QUANTUM COMPUTATIONAL NETWORKS [J].
DEUTSCH, D .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1989, 425 (1868) :73-90
[5]   2-BIT GATES ARE UNIVERSAL FOR QUANTUM COMPUTATION [J].
DIVINCENZO, DP .
PHYSICAL REVIEW A, 1995, 51 (02) :1015-1022
[6]  
Ernst R. R., 1987, PRINCIPLES NUCL MAGN
[7]   Bulk spin-resonance quantum computation [J].
Gershenfeld, NA ;
Chuang, IL .
SCIENCE, 1997, 275 (5298) :350-356
[8]  
Gilmore R., 1974, LIE GROUPS LIE ALGEB, DOI DOI 10.1063/1.3128987
[9]   Unitary control in quantum ensembles:: Maximizing signal intensity in coherent spectroscopy [J].
Glaser, SJ ;
Schulte-Herbrüggen, T ;
Sieveking, M ;
Schedletzky, O ;
Nielsen, NC ;
Sorensen, OW ;
Griesinger, C .
SCIENCE, 1998, 280 (5362) :421-424
[10]   NONLINEAR CONTROLLABILITY VIA LIE THEORY [J].
HAYNES, GW ;
HERMES, H .
SIAM JOURNAL ON CONTROL, 1970, 8 (04) :450-&