MIN-MAX MOVING-HORIZON ESTIMATION FOR UNCERTAIN DISCRETE-TIME LINEAR SYSTEMS

被引:33
作者
Alessandri, A. [1 ]
Baglietto, M. [2 ]
Battistelli, G. [3 ]
机构
[1] Univ Genoa, Dept Mech Engn, I-16129 Genoa, Italy
[2] Univ Genoa, Dept Commun Comp & Syst Sci, I-16145 Genoa, Italy
[3] Univ Florence, Dipartimento Sistemi & Informat, I-50139 Florence, Italy
关键词
moving-horizon state estimation; min-max least squares; stability; semidefinite programming; Lagrangian relaxation; STATE ESTIMATION; OPTIMIZATION; STABILITY; OBSERVERS; MODELS;
D O I
10.1137/090762798
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Moving-horizon state estimation is addressed for a class of uncertain discrete-time linear systems with disturbances acting on the dynamic and measurement equations. The estimates are obtained by minimizing a least-squares cost function in the worst case. The resulting min-max problem can be solved by using semidefinite programming or Lagrangian relaxation, which allows one to determine approximate estimates with a reduced computational burden. Assuming a certain error in the solution of such min-max optimization problems, the stability of the estimation error in the presence of bounded disturbances is guaranteed under suitable conditions. Explicit bounding sequences on the estimation are derived. Simulation results are reported showing benefits of the proposed approach in terms of computational tractability and performances as compared with alternative methodologies.
引用
收藏
页码:1439 / 1465
页数:27
相关论文
共 26 条
  • [1] Further results on nonlinear receding-horizon observers
    Alamir, M
    Calvillo-Corona, LA
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (07) : 1184 - 1188
  • [2] Robust receding-horizon state estimation for uncertain discrete-time linear systems
    Alessandri, A
    Baglietto, M
    Battistelli, G
    [J]. SYSTEMS & CONTROL LETTERS, 2005, 54 (07) : 627 - 643
  • [3] Receding-horizon estimation for discrete-time linear systems
    Alessandri, A
    Baglietto, M
    Battistelli, G
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (03) : 473 - 478
  • [4] Moving-horizon state estimation for nonlinear discrete-time systems: New stability results and approximation schemes
    Alessandri, Angelo
    Baglietto, Marco
    Battistelli, Giorgio
    [J]. AUTOMATICA, 2008, 44 (07) : 1753 - 1765
  • [5] Moving-Horizon State Estimation for Nonlinear Systems Using Neural Networks
    Alessandri, Angelo
    Baglietto, Marco
    Battistelli, Giorgio
    Gaggero, Mauro
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (05): : 768 - 780
  • [6] Stabilization of LPV systems: State feedback, state estimation, and duality
    Blanchini, F
    Miani, S
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (01) : 76 - 97
  • [7] Boyd S., 2004, CONVEX OPTIMIZATION, VFirst, DOI DOI 10.1017/CBO9780511804441
  • [8] Parameter estimation in the presence of bounded data uncertainties
    Chandrasekaran, S
    Golub, GH
    Gu, M
    Sayed, AH
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1998, 19 (01) : 235 - 252
  • [9] Robust moving horizon state observer
    Chu, D.
    Chen, T.
    Marquez, H. J.
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2007, 80 (10) : 1636 - 1650
  • [10] Robust solutions to least-squares problems with uncertain data
    ElGhaoui, L
    Lebret, H
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1997, 18 (04) : 1035 - 1064