Three non-zero solutions for a nonlinear eigenvalue problem

被引:4
作者
Faraci, Francesca [1 ]
Kristaly, Alexandru [2 ]
机构
[1] Univ Catania, Dept Math, Catania, Italy
[2] Univ Babes Bolyai, Dept Econ, R-3400 Cluj Napoca, Romania
关键词
Nonlinear eigenvalue problem; Dirichlet boundary conditions; Multiple solutions; CRITICAL-POINTS THEOREM; ELLIPTIC-EQUATIONS; EXACT MULTIPLICITY; DIRICHLET PROBLEM; P-LAPLACIAN;
D O I
10.1016/j.jmaa.2012.04.045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper we prove a novel multiplicity result for a model quasilinear Dirichlet problem (P-lambda) depending on a positive parameter lambda. By a variational method, we prove that for every lambda > 1 problem (P-lambda) has at least two non-zero solutions, while there exists (lambda) over cap > 1 such that problem (P-(lambda) over cap) has at least three non-zero solutions. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:225 / 230
页数:6
相关论文
共 14 条
[1]  
Averna D., 2003, Topol. Meth. Nonl. Anal., V22, P93
[2]   Some remarks on a three critical points theorem [J].
Bonanno, G .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 54 (04) :651-665
[3]   Three weak solutions for elliptic Dirichlet problems [J].
Bonanno, Gabriele ;
Bisci, Giovanni Molica .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 382 (01) :1-8
[4]  
Cammaroto F, 2007, DYNAM SYST APPL, V16, P673
[5]  
de Paiva FO, 2006, DISCRETE CONT DYN-A, V15, P669
[6]   Exact multiplicity results for boundary value problems with nonlinearities generalising cubic [J].
Korman, P ;
Li, Y ;
Ouyang, T .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1996, 126 :599-616
[7]   BOUNDARY-REGULARITY FOR SOLUTIONS OF DEGENERATE ELLIPTIC-EQUATIONS [J].
LIEBERMAN, GM .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1988, 12 (11) :1203-1219
[8]   A multiplicity theorem for a variable exponent dirichlet problem [J].
Papageorgiou, Nikolaos S. ;
Rocha, Eugenio M. .
GLASGOW MATHEMATICAL JOURNAL, 2008, 50 :335-349
[9]   On a three critical points theorem [J].
Ricceri, B .
ARCHIV DER MATHEMATIK, 2000, 75 (03) :220-226
[10]  
Ricceri B, 2010, J NONLINEAR CONVEX A, V11, P503