KERNEL ENTROPY COMPONENT ANALYSIS IN REMOTE SENSING DATA CLUSTERING

被引:7
|
作者
Gomez-Chova, Luis [1 ]
Jenssen, Robert [2 ]
Camps-Valls, Gustavo [1 ]
机构
[1] Univ Valencia, IPL, E-46003 Valencia, Spain
[2] Univ Tromso, Dept Phys & Technol, Tromso, Norway
关键词
Kernel method; Renyi entropy; Parzen windowing; kernel principal component analysis; feature extraction; spectral clustering; k-means;
D O I
10.1109/IGARSS.2011.6050035
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes the kernel entropy component analysis (KECA) for clustering remote sensing data. The method generates nonlinear features that reveal structure related to the Renyi entropy of the input space data set. Unlike other kernel feature extraction methods, the top eigenvalues and eigenvectors of the kernel matrix are not necessarily chosen. Data are interestingly mapped with a distinct angular structure, which is exploited to derive a new angle-based spectral clustering algorithm based on the mapped data. An out-of-sample extension of the method is also presented to deal with test data. We focus on cloud screening from MERIS images. Several images are considered to account for the high variability of the problem. Good results show the suitability of the proposal.
引用
收藏
页码:3728 / 3731
页数:4
相关论文
共 50 条
  • [1] Kernel Entropy Component Analysis for Remote Sensing Image Clustering
    Gomez-Chova, Luis
    Jenssen, Robert
    Camps-Valls, Gustavo
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2012, 9 (02) : 312 - 316
  • [2] Quantum clustering using kernel entropy component analysis
    Li, Yangyang
    Wang, Yang
    Wang, Yuying
    Jiao, Licheng
    Liu, Yang
    NEUROCOMPUTING, 2016, 202 : 36 - 48
  • [3] MEAN SHIFT SPECTRAL CLUSTERING USING KERNEL ENTROPY COMPONENT ANALYSIS
    Agersborg, Jorgen A.
    Jenssen, Robert
    2014 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2014,
  • [4] Adaptive Clustering of Production State based on Kernel Entropy Component Analysis
    He, Fei
    Li, Min
    Yang, Jian-hong
    Xu, Jin-wu
    2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010, 2010,
  • [5] Kernel Principal Component Analysis for the Classification of Hyperspectral Remote Sensing Data over Urban Areas
    Mathieu Fauvel
    Jocelyn Chanussot
    Jón Atli Benediktsson
    EURASIP Journal on Advances in Signal Processing, 2009
  • [6] Kernel Principal Component Analysis for the Classification of Hyperspectral Remote Sensing Data over Urban Areas
    Fauvel, Mathieu
    Chanussot, Jocelyn
    Benediktsson, Jon Atli
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2009,
  • [7] Kernel Entropy Component Analysis
    Jenssen, Robert
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (05) : 847 - 860
  • [8] Kernel independent component analysis for gene expression data clustering
    Jin, X
    Xu, AB
    Bie, RF
    Guo, P
    INDEPENDENT COMPONENT ANALYSIS AND BLIND SIGNAL SEPARATION, PROCEEDINGS, 2006, 3889 : 454 - 461
  • [9] Hot rolled strip state clustering based on kernel entropy component analysis
    He, Fei
    Xu, Jin-Wu
    Liang, Zhi-Guo
    Wang, Xiao-Chen
    Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), 2012, 43 (05): : 1732 - 1738
  • [10] Regional and Entropy component analysis based remote sensing images fusion
    Luo, Xiaoqing
    Wu, Xiaojun
    Zhang, Zhancheng
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2014, 26 (03) : 1279 - 1287