SHARP HEAT KERNEL ESTIMATES FOR RELATIVISTIC STABLE PROCESSES IN OPEN SETS

被引:48
作者
Chen, Zhen-Qing [1 ]
Kim, Panki [2 ]
Song, Renming [3 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
[2] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[3] Univ Illinois, Dept Math, Urbana, IL 61801 USA
基金
新加坡国家研究基金会;
关键词
Symmetric alpha-stable process; relativistic stable process; heat kernel; transition density; Green function; exit time; Levy system; parabolic Harnack inequality; BOUNDARY HARNACK PRINCIPLE; SYMMETRIC JUMP-PROCESSES; METRIC MEASURE-SPACES; GREEN-FUNCTIONS; FRACTIONAL LAPLACIAN; SCHRODINGER-OPERATORS; SUBORDINATE PROCESSES; STABILITY; DOMAINS; THEOREM;
D O I
10.1214/10-AOP611
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we establish sharp two-sided estimates for the transition densities of relativistic stable processes [i.e., for the heat kernels of the operators m - (m(2/alpha) - Delta)(alpha/2)] in C-1,C-1 open sets. Here m > 0 and alpha is an element of (0, 2). The estimates are uniform in m is an element of (0, M] for each fixed M > 0. Letting m down arrow 0, we recover the Dirichlet heat kernel estimates for Delta(alpha/2) := -(-Delta)(alpha/2) in C-1,C-1 open sets obtained in [14]. Sharp two-sided estimates are also obtained for Green functions of relativistic stable processes in bounded C-1,C-1 open sets.
引用
收藏
页码:213 / 244
页数:32
相关论文
共 43 条
[1]   Boundary Harnack principle for p-harmonic functions in smooth Euclidean domains [J].
Aikawa, Hiroaki ;
Kilpelainen, Tero ;
Shanmugalingam, Nageswari ;
Zhong, Xiao .
POTENTIAL ANALYSIS, 2007, 26 (03) :281-301
[2]  
[Anonymous], 1986, TRANSLATIONS MATH MO
[3]  
[Anonymous], 1995, GRUNDLEHREN MATH WIS
[4]  
Barlow MT, 2009, T AM MATH SOC, V361, P1963
[5]  
Blumenthal R. M., 1960, Trans. Amer. Math. Soc, V95, P263, DOI [DOI 10.1090/S0002-9947-1960-0119247-6, 10.1090/S0002-9947-1960-0119247-6]
[6]  
Bogdan K, 1997, STUD MATH, V123, P43
[7]  
Bogdan K., 2000, Probab. Math. Statist., V20, P293
[8]   HEAT KERNEL ESTIMATES FOR THE FRACTIONAL LAPLACIAN WITH DIRICHLET CONDITIONS [J].
Bogdan, Krzysztof ;
Grzywny, Tomasz ;
Ryznar, Michal .
ANNALS OF PROBABILITY, 2010, 38 (05) :1901-1923
[9]   BESSEL POTENTIALS, HITTING DISTRIBUTIONS AND GREEN FUNCTIONS [J].
Byczkowski, T. ;
Malecki, J. ;
Ryznar, M. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (09) :4871-4900
[10]   RELATIVISTIC SCHRODINGER-OPERATORS - ASYMPTOTIC-BEHAVIOR OF THE EIGENFUNCTIONS [J].
CARMONA, R ;
MASTERS, WC ;
SIMON, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 91 (01) :117-142