Robust Estimation for Ordinary Differential Equation Models

被引:37
作者
Cao, J. [1 ]
Wang, L. [2 ]
Xu, J. [1 ]
机构
[1] Simon Fraser Univ, Dept Stat & Actuarial Sci, Burnaby, BC V5A 1S6, Canada
[2] Univ British Columbia, Dept Stat, Vancouver, BC V6T 1Z2, Canada
关键词
Dynamic model; Predator-prey system; Robust penalized smoothing; System identification; PARAMETER-ESTIMATION; EFFICIENCY;
D O I
10.1111/j.1541-0420.2011.01577.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Applied scientists often like to use ordinary differential equations (ODEs) to model complex dynamic processes that arise in biology, engineering, medicine, and many other areas. It is interesting but challenging to estimate ODE parameters from noisy data, especially when the data have some outliers. We propose a robust method to address this problem. The dynamic process is represented with a nonparametric function, which is a linear combination of basis functions. The nonparametric function is estimated by a robust penalized smoothing method. The penalty term is defined with the parametric ODE model, which controls the roughness of the nonparametric function and maintains the fidelity of the nonparametric function to the ODE model. The basis coefficients and ODE parameters are estimated in two nested levels of optimization. The coefficient estimates are treated as an implicit function of ODE parameters, which enables one to derive the analytic gradients for optimization using the implicit function theorem. Simulation studies show that the robust method gives satisfactory estimates for the ODE parameters from noisy data with outliers. The robust method is demonstrated by estimating a predatorprey ODE model from real ecological data.
引用
收藏
页码:1305 / 1313
页数:9
相关论文
共 37 条
[1]  
[Anonymous], 2003, Semiparametric Regression
[2]  
[Anonymous], 1999, Local regression and likelihood
[3]  
Bard Y., 1974, Nonlinear parameter estimation
[4]   Experimental demonstration of chaos in a microbial food web [J].
Becks, L ;
Hilker, FM ;
Malchow, H ;
Jürgens, K ;
Arndt, H .
NATURE, 2005, 435 (7046) :1226-1229
[5]   NONLINEAR PARAMETER-ESTIMATION - A CASE-STUDY COMPARISON [J].
BIEGLER, LT ;
DAMIANO, JJ ;
BLAU, GE .
AICHE JOURNAL, 1986, 32 (01) :29-45
[6]  
Bock HG., 1983, NUMERICAL TREATMENT, P95, DOI [10. 1007/978-1-4684-7324-7_7, DOI 10.1007/978-1-4684-7324-7_7, DOI 10.1007/978-1-4684-7324-77]
[7]   Parameter estimation of ODE's via nonparametric estimators [J].
Brunel, Nicolas J-B. .
ELECTRONIC JOURNAL OF STATISTICS, 2008, 2 :1242-1267
[8]   Estimating a predator-prey dynamical model with the parameter cascades method [J].
Cao, Jiguo ;
Fussmann, Gregor F. ;
Ramsay, James O. .
BIOMETRICS, 2008, 64 (03) :959-967
[9]  
Carroll R. J., 2006, MEASUREMENT ERROR NO
[10]   Efficient local estimation for time-varying coefficients in deterministic dynamic models with applications to HIV-1 dynamics [J].
Chen, Jianwei ;
Wu, Hulin .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2008, 103 (481) :369-384