Risk factors for cardiovascular disease in patients with metabolic-associated fatty liver disease: a machine learning approach

被引:36
作者
Drozdz, Karolina [1 ]
Nabrdalik, Katarzyna [1 ,2 ,3 ]
Kwiendacz, Hanna [1 ]
Hendel, Mirela [4 ]
Olejarz, Anna [4 ]
Tomasik, Andrzej [5 ]
Bartman, Wojciech [6 ]
Nalepa, Jakub [7 ]
Gumprecht, Janusz [1 ]
Lip, Gregory Y. H. [2 ,3 ,8 ]
机构
[1] Med Univ Silesiaia, Dept Internal Med Diabetol & Nephrol, Fac Med Sci Zabrze, 3 Maja 13-15, PL-41800 Katowice, Poland
[2] Univ Liverpool, Liverpool Ctr Cardiovasc Sci, Liverpool, England
[3] Liverpool Heart & Chest Hosp, Liverpool, England
[4] Med Univ Silesiaia, Fac Med Sci Zabrze, Students Sci Assoc, Dept Internal Med Diabetol & Nephrol Zabrze, Katowice, Poland
[5] Med Univ Silesiaia, Fac Med Sci Zabrze, Dept Cardiol 2, Katowice, Poland
[6] Med Univ Silesiaia, Fac Med Sci Zabrze, Dept Neurol, Katowice, Poland
[7] Silesian Tech Univ, Dept Algorithm & Software, Gliwice, Poland
[8] Aalborg Univ, Dept Clin Med, Aalborg, Denmark
关键词
Cardiovascular disease; Metabolic-associated fatty liver disease; Machine learning; AMERICAN-COLLEGE; HEART-FAILURE; GUIDELINES; STEATOHEPATITIS; PERFORMANCE; PREVENTION; ASSAYS;
D O I
10.1186/s12933-022-01672-9
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Nonalcoholic fatty liver disease is associated with an increased cardiovascular disease (CVD) risk, although the exact mechanism(s) are less clear. Moreover, the relationship between newly redefined metabolic-associated fatty liver disease (MAFLD) and CVD risk has been poorly investigated. Data-driven machine learning (ML) techniques may be beneficial in discovering the most important risk factors for CVD in patients with MAFLD. Methods In this observational study, the patients with MAFLD underwent subclinical atherosclerosis assessment and blood biochemical analysis. Patients were split into two groups based on the presence of CVD (defined as at least one of the following: coronary artery disease; myocardial infarction; coronary bypass grafting; stroke; carotid stenosis; lower extremities artery stenosis). The ML techniques were utilized to construct a model which could identify individuals with the highest risk of CVD. We exploited the multiple logistic regression classifier operating on the most discriminative patient's parameters selected by univariate feature ranking or extracted using principal component analysis (PCA). Receiver operating characteristic (ROC) curves and area under the ROC curve (AUC) were calculated for the investigated classifiers, and the optimal cut-point values were extracted from the ROC curves using the Youden index, the closest to (0, 1) criteria and the Index of Union methods. Results In 191 patients with MAFLD (mean age: 58, SD: 12 years; 46% female), there were 47 (25%) patients who had the history of CVD. The most important clinical variables included hypercholesterolemia, the plaque scores, and duration of diabetes. The five, ten and fifteen most discriminative parameters extracted using univariate feature ranking and utilized to fit the ML models resulted in AUC of 0.84 (95% confidence interval [CI]: 0.77-0.90, p < 0.0001), 0.86 (95% CI 0.80-0.91, p < 0.0001) and 0.87 (95% CI 0.82-0.92, p < 0.0001), whereas the classifier fitted over 10 principal components extracted using PCA followed by the parallel analysis obtained AUC of 0.86 (95% CI 0.81-0.91, p < 0.0001). The best model operating on 5 most discriminative features correctly identified 114/144 (79.17%) low-risk and 40/47 (85.11%) high-risk patients. Conclusion A ML approach demonstrated high performance in identifying MAFLD patients with prevalent CVD based on the easy-to-obtain patient parameters.
引用
收藏
页数:12
相关论文
共 54 条
[1]   Cardiovascular disease risk prediction using automated machine learning: A prospective study of 423,604 UK Biobank participants [J].
Alaa, Ahmed M. ;
Bolton, Thomas ;
Di Angelantonio, Emanuele ;
Rudd, James H. F. ;
van der Schaar, Mihaela .
PLOS ONE, 2019, 14 (05)
[2]   Metabolic dysfunction-associated fatty liver disease: a year in review [J].
Alharthi, Jawaher ;
Gastaldelli, Amalia ;
Cua, Ian Homer ;
Ghazinian, Hasmik ;
Eslam, Mohammed .
CURRENT OPINION IN GASTROENTEROLOGY, 2022, 38 (03) :251-260
[3]  
American Diabetes Association, 2022, Clin Diabetes, V40, P10, DOI 10.2337/cd22-as01
[4]   Aortic Pulse Wave Velocity Improves Cardiovascular Event Prediction An Individual Participant Meta-Analysis of Prospective Observational Data From 17,635 Subjects [J].
Ben-Shlomo, Yoav ;
Spears, Melissa ;
Boustred, Chris ;
May, Margaret ;
Anderson, Simon G. ;
Benjamin, Emelia J. ;
Boutouyrie, Pierre ;
Cameron, James ;
Chen, Chen-Huan ;
Cruickshank, J. Kennedy ;
Hwang, Shih-Jen ;
Lakatta, Edward G. ;
Laurent, Stephane ;
Maldonado, Joao ;
Mitchell, Gary F. ;
Najjar, Samer S. ;
Newman, Anne B. ;
Ohishi, Mitsuru ;
Pannier, Bruno ;
Pereira, Telmo ;
Vasan, Ramachandran S. ;
Shokawa, Tomoki ;
Sutton-Tyrell, Kim ;
Verbeke, Francis ;
Wang, Kang-Ling ;
Webb, David J. ;
Hansen, Tine Willum ;
Zoungas, Sophia ;
McEniery, Carmel M. ;
Cockcroft, John R. ;
Wilkinson, Ian B. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2014, 63 (07) :636-646
[5]   High prevalence of previously unknown heart failure and left ventricular dysfunction in patients with type 2 diabetes [J].
Boonman-de Winter, L. J. M. ;
Rutten, F. H. ;
Cramer, M. J. M. ;
Landman, M. J. ;
Liem, A. H. ;
Rutten, G. E. H. M. ;
Hoes, A. W. .
DIABETOLOGIA, 2012, 55 (08) :2154-2162
[6]  
Bosowski P., 2021, P IEEE ICIP, V2021, P3772
[7]   NAFLD: A multisystem disease [J].
Byrne, Christopher D. ;
Targher, Giovanni .
JOURNAL OF HEPATOLOGY, 2015, 62 :S47-S64
[8]   The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases [J].
Chalasani, Naga ;
Younossi, Zobair ;
Lavine, Joel E. ;
Charlton, Michael ;
Cusi, Kenneth ;
Rinella, Mary ;
Harrison, Stephen A. ;
Brunt, Elizabeth M. ;
Sanyal, Arun J. .
HEPATOLOGY, 2018, 67 (01) :328-357
[9]   Global Prevalence and Clinical Characteristics of Metabolic-associated Fatty Liver Disease: A Meta-Analysis and Systematic Review of 10 739 607 Individuals [J].
Chan, Kai En ;
Koh, Tiffany Jia Ling ;
Tang, Ansel Shao Pin ;
Quek, Jingxuan ;
Yong, Jie Ning ;
Tay, Phoebe ;
Tan, Darren Jun Hao ;
Lim, Wen Hui ;
Lin, Snow Yunni ;
Huang, Daniel ;
Chan, Mark ;
Khoo, Chin Meng ;
Chew, Nicholas W. S. ;
Kaewdech, Apichat ;
Chamroonkul, Naichaya ;
Dan, Yock Young ;
Noureddin, Mazen ;
Muthiah, Mark ;
Eslam, Mohammed ;
Ng, Cheng Han .
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2022, 107 (09) :2691-2700
[10]   Alcoholic and non-alcoholic fatty liver disease and associations with coronary artery calcification: evidence from the Kangbuk Samsung Health Study [J].
Chang, Yoosoo ;
Ryu, Seungho ;
Sung, Ki-Chul ;
Cho, Yong Kyun ;
Sung, Eunju ;
Kim, Han-Na ;
Jung, Hyun-Suk ;
Yun, Kyung Eun ;
Ahn, Jiin ;
Shin, Hocheol ;
Wild, Sarah Helen ;
Byrne, Christopher D. .
GUT, 2019, 68 (09) :1667-1675