Metalloprotein switches that display chemical-dependent electron transfer in cells

被引:42
作者
Atkinson, Joshua T. [1 ]
Campbell, Ian J. [2 ]
Thomas, Emily E. [2 ]
Bonitatibus, Sheila C. [3 ]
Elliott, Sean J. [3 ]
Bennett, George N. [4 ,5 ]
Silberg, Jonathan J. [4 ,6 ]
机构
[1] Rice Univ, Syst Synthet & Phys Biol Grad Program, Houston, TX USA
[2] Rice Univ, Biochem & Cell Biol Grad Program, Houston, TX USA
[3] Boston Univ, Dept Chem, 590 Commonwealth Ave, Boston, MA 02215 USA
[4] Rice Univ, Dept BioSci, Houston, TX 77005 USA
[5] Rice Univ, Dept Chem & Biomol Engn, Houston, TX USA
[6] Rice Univ, Dept Bioengn, Houston, TX 77005 USA
关键词
SHEWANELLA-ONEIDENSIS; PROTEIN SWITCHES; TRANSFER COMPLEX; STRUCTURAL BASIS; FERREDOXIN; NITROGENASE; REDUCTASE; EXPRESSION; BIOSENSOR; EVOLUTION;
D O I
10.1038/s41589-018-0192-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Biological electron transfer is challenging to directly regulate using environmental conditions. To enable dynamic, protein-level control over energy flow in metabolic systems for synthetic biology and bioelectronics, we created ferredoxin logic gates that utilize transcriptional and post-translational inputs to control energy flow through a synthetic electron transfer pathway that is required for bacterial growth. These logic gates were created by subjecting a thermostable, plant-type ferredoxin to backbone fission and fusing the resulting fragments to a pair of proteins that self-associate, a pair of proteins whose association is stabilized by a small molecule, and to the termini of a ligand-binding domain. We show that the latter domain insertion design strategy yields an allosteric ferredoxin switch that acquires an oxygen-tolerant [2Fe-2S] cluster and can use different chemicals, including a therapeutic drug and an environmental pollutant, to control the production of a reduced metabolite in Escherichia coli and cell lysates.
引用
收藏
页码:189 / +
页数:8
相关论文
共 45 条
[1]   Biochemical and crystallographic characterization of ferredoxin-NADP+ reductase from nonphotosynthetic tissues [J].
Aliverti, A ;
Faber, R ;
Finnerty, CM ;
Ferioli, C ;
Pandini, V ;
Negri, A ;
Karplus, PA ;
Zanetti, G .
BIOCHEMISTRY, 2001, 40 (48) :14501-14508
[2]   Interplay of SpkG kinase and the Slr0151 protein in the phosphorylation of ferredoxin 5 in Synechocystis sp strain PCC 6803 [J].
Angeleri, Martina ;
Zorina, Anna ;
Aro, Eva-Mari ;
Battchikova, Natalia .
FEBS LETTERS, 2018, 592 (03) :411-421
[3]   Cellular Assays for Ferredoxins: A Strategy for Understanding Electron Flow through Protein Carriers That Link Metabolic Pathways [J].
Atkinson, Joshua T. ;
Campbell, Ian ;
Bennett, George N. ;
Silberg, Jonathan J. .
BIOCHEMISTRY, 2016, 55 (51) :7047-7064
[4]   Alternative FeS cluster ligands: tuning redox potentials and chemistry [J].
Bak, Daniel W. ;
Elliott, Sean J. .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2014, 19 :50-58
[5]   Redox Characterization of the FeS Protein MitoNEET and Impact of Thiazolidinedione Drug Binding [J].
Bak, Daniel W. ;
Zuris, John A. ;
Paddock, Mark L. ;
Jennings, Patricia A. ;
Elliott, Sean J. .
BIOCHEMISTRY, 2009, 48 (43) :10193-10195
[6]   A synthetic system links FeFe-hydrogenases to essential E. coli sulfur metabolism [J].
Barstow, Buz ;
Agapakis, Christina M. ;
Boyle, Patrick M. ;
Grandl, Gerald ;
Silver, Pamela A. ;
Wintermute, Edwin H. .
JOURNAL OF BIOLOGICAL ENGINEERING, 2011, 5 (01)
[7]   EVOLUTION OF STRUCTURE OF FERREDOXIN BASED ON LIVING RELICS OF PRIMITIVE AMINO ACID SEQUENCES [J].
ECK, RV ;
DAYHOFF, MO .
SCIENCE, 1966, 152 (3720) :363-&
[8]   The dual effect of a ferredoxin-hydrogenase fusion protein in vivo: successful divergence of the photosynthetic electron flux towards hydrogen production and elevated oxygen tolerance [J].
Eilenberg, Haviva ;
Weiner, Iddo ;
Ben-Zvi, Oren ;
Pundak, Carmel ;
Marmari, Abigail ;
Liran, Oded ;
Wecker, Matt S. ;
Milrad, Yuval ;
Yacoby, Iftach .
BIOTECHNOLOGY FOR BIOFUELS, 2016, 9
[9]   A One Pot, One Step, Precision Cloning Method with High Throughput Capability [J].
Engler, Carola ;
Kandzia, Romy ;
Marillonnet, Sylvestre .
PLOS ONE, 2008, 3 (11)
[10]   Structural basis for the thermostability of ferredoxin from the cyanobacterium Mastigrocladus laminosus [J].
Fish, A ;
Danieli, T ;
Ohad, I ;
Nechushtai, R ;
Livnah, O .
JOURNAL OF MOLECULAR BIOLOGY, 2005, 350 (03) :599-608