Steiner tree problem with minimum number of Steiner points and bounded edge-length

被引:223
作者
Lin, GH
Xue, GL [1 ]
机构
[1] Univ Vermont, Dept Comp Sci, Burlington, VT 05405 USA
[2] Chinese Acad Sci, Inst Appl Math, Beijing 100080, Peoples R China
基金
美国国家科学基金会;
关键词
algorithms; approximation algorithms; Steiner minimum trees; VLSI design; WDM optimal networks; wireless communications;
D O I
10.1016/S0020-0190(98)00201-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we study the Steiner tree problem with minimum number of Steiner points and bounded edge-length (STP-MSPBEL), which asks for a tree interconnecting a given set of n terminal points and a minimum number of Steiner points such that the Euclidean length of each edge is no more than a given positive constant. This problem has applications in VLSI design, WDM optimal networks and wireless communications. We prove that this problem is NP-complete and present a polynomial time approximation algorithm whose worst-case performance ratio is 5. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:53 / 57
页数:5
相关论文
共 11 条
[1]   GLOBAL ROUTING BASED ON STEINER MIN-MAX TREES [J].
CHIANG, C ;
SARRAFZADEH, M ;
WONG, CK .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 1990, 9 (12) :1318-1325
[2]  
DU DZ, 1992, ALGORITHMICA, V7, P121, DOI 10.1007/BF01758755
[3]   COMPLEXITY OF COMPUTING STEINER MINIMAL TREES [J].
GAREY, MR ;
GRAHAM, RL ;
JOHNSON, DS .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1977, 32 (04) :835-859
[4]   STEINER MINIMAL TREES [J].
GILBERT, EN ;
POLLAK, HO .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1968, 16 (01) :1-&
[5]  
GILBERT EN, 1967, BELL SYST TECH J, V9, P2209
[6]  
Hwang F., 1992, ANN DISCRETE MATH, P53
[7]  
LI CS, 1994, IEEE INFOCOM SER, P130, DOI 10.1109/INFCOM.1994.337624
[8]  
Ramamurthy B, 1997, IEEE INFOCOM SER, P261, DOI 10.1109/INFCOM.1997.635138
[9]   BOTTLENECK STEINER TREES IN THE PLANE [J].
SARRAFZADEH, M ;
WONG, CK .
IEEE TRANSACTIONS ON COMPUTERS, 1992, 41 (03) :370-374
[10]   MINIMUM COST NETWORKS WITH NONLINEAR COSTS [J].
SOUKUP, J .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1975, 29 (04) :571-581