Behavioral impact of neurotransmitter-activated G-protein-coupled receptors:: Muscarinic and GABAB receptors regulate Caenorhabditis elegans locomotion

被引:63
作者
Dittman, Jeremy S. [1 ]
Kaplan, Joshua M. [1 ]
机构
[1] Massachusetts Gen Hosp, Dept Mol Biol, Boston, MA 02114 USA
关键词
C; elegans; feedback; GABA(B) receptor; GPCR; locomotion; muscarinic;
D O I
10.1523/JNEUROSCI.0378-08.2008
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Neurotransmitter released from presynaptic terminals activates both ligand-gated ion channels (ionotropic receptors) and a variety of G-protein-coupled receptors (GPCRs). These neurotransmitter receptors are expressed on both presynaptic and postsynaptic cells. Thus, each neurotransmitter acts on multiple receptor classes, generating a large repertoire of physiological responses. The impact of many ionotropic receptors on neuronal activity and behavior has been clearly elucidated; however, much less is known about how neurotransmitter-gated GPCRs regulate neurons and circuits. In Caenorhabditis elegans, both acetylcholine (ACh) and GABA are released in the nerve cord and mediate fast neuromuscular excitation and inhibition during locomotion. Here we identify a muscarinic receptor (GAR-2) and the GABA(B) receptor dimer (GBB-1/2) that detect synaptically released ACh and GABA, respectively. Both GAR-2 and GBB-1/2 inhibited cholinergic motor neurons when ACh and GABA levels were enhanced. Loss of either GPCR resulted in movement defects, suggesting that these receptors are activated during locomotion. When the negative feedback provided by GAR-2 was replaced with positive feedback, animals became highly sensitive to ACh levels and locomotion was severely impaired. Thus, conserved GPCRs act in the nematode motor circuit to provide negative feedback and to regulate locomotory behaviors that underlie navigation.
引用
收藏
页码:7104 / 7112
页数:9
相关论文
共 49 条
  • [1] [Anonymous], 2006, HETEROTRIMERIC G PRO, DOI DOI 10.1895/WORMBOOK.1.75.1
  • [2] Neurobiology of the Caenorhabditis elegans genome
    Bargmann, CI
    [J]. SCIENCE, 1998, 282 (5396) : 2028 - 2033
  • [3] Potentiation of exocytosis by phospholipase C-coupled G-protein-coupled receptors requires the priming protein Munc13-1
    Bauer, Claudia S.
    Woolley, Robert J.
    Teschemacher, Anja G.
    Seward, Elizabeth P.
    [J]. JOURNAL OF NEUROSCIENCE, 2007, 27 (01) : 212 - 219
  • [4] Molecular structure and physiological functions of GABAB receptors
    Bettler, B
    Kaupmann, K
    Mosbacher, J
    Gassmann, M
    [J]. PHYSIOLOGICAL REVIEWS, 2004, 84 (03) : 835 - 867
  • [5] BRENNER S, 1974, GENETICS, V77, P71
  • [6] Constitutive activation of chimeric m2/m5 muscarinic receptors and delineation of G-protein coupling selectivity domains
    Burstein, ES
    Spalding, TA
    Brann, MR
    [J]. BIOCHEMICAL PHARMACOLOGY, 1996, 51 (04) : 539 - 544
  • [7] Carre-Pierrat Maite, 2006, Invertebrate Neuroscience, V6, P189, DOI 10.1007/s10158-006-0033-z
  • [8] Prolonged synaptic currents and glutamate spillover at the parallel fiber to stellate cell synapse
    Carter, AG
    Regehr, WG
    [J]. JOURNAL OF NEUROSCIENCE, 2000, 20 (12) : 4423 - 4434
  • [9] Mechanism of extrasynaptic dopamine signaling in Caenorhabditis elegans
    Chase, DL
    Pepper, JS
    Koelle, MR
    [J]. NATURE NEUROSCIENCE, 2004, 7 (10) : 1096 - 1103
  • [10] CROLL N A, 1975, P71, DOI 10.1016/S0065-308X(08)60319-X