An iterative solution procedure for Winkler-type contact problems with friction

被引:2
作者
Angelov, TA
Liolios, AA
机构
[1] Bulgarian Acad Sci, Inst Mech, BU-1113 Sofia, Bulgaria
[2] Democritus Univ Thrace, Dept Civil Engn, Xanti 67100, Greece
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 2004年 / 84卷 / 02期
关键词
contact problems with friction; nonlinear alternating direction method; finite element method;
D O I
10.1002/zamm.200310086
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A class of contact problems with friction in elastostatics is considered. The existence and uniqueness results, the finite element approximation and the mostly used iterative methods are briefly summarized. An algorithm, based on the nonlinear alternating direction method of R. B. Kellogg, is proposed and used to solve an example problem with different contact boundary conditions. (C) 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:136 / 143
页数:8
相关论文
共 30 条
[11]  
Glowinski R, 1984, NUMERICAL METHODS NO
[12]   On the numerical approximation of a frictional contact problem with normal compliance [J].
Han, WM .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1996, 17 (3-4) :307-321
[13]  
Hlavacek I., 1988, Solution of Variational Inequalities in Mechanics
[14]   A NONLINEAR ALTERNATING DIRECTION METHOD [J].
KELLOGG, RB .
MATHEMATICS OF COMPUTATION, 1969, 23 (105) :23-&
[15]  
Kikuchi N., 1988, CONTACT PROBLEMS ELA
[16]   ON FRICTION PROBLEMS WITH NORMAL COMPLIANCE [J].
KLARBRING, A ;
MIKELIC, A ;
SHILLOR, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1989, 13 (08) :935-955
[17]   FRICTIONAL CONTACT PROBLEMS WITH NORMAL COMPLIANCE [J].
KLARBRING, A ;
MIKELIC, A ;
SHILLOR, M .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1988, 26 (08) :811-832
[18]   THEORY AND APPROXIMATION OF QUASI-STATIC FRICTIONAL CONTACT PROBLEMS [J].
LEE, CY ;
ODEN, JT .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1993, 106 (03) :407-429
[19]  
LEE CY, 1993, INT J ENG SCI, V31, P407
[20]  
LIOLIOS AA, 1982, Z ANGEW MATH MECH, V62, pTT38