An iterative solution procedure for Winkler-type contact problems with friction

被引:2
作者
Angelov, TA
Liolios, AA
机构
[1] Bulgarian Acad Sci, Inst Mech, BU-1113 Sofia, Bulgaria
[2] Democritus Univ Thrace, Dept Civil Engn, Xanti 67100, Greece
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 2004年 / 84卷 / 02期
关键词
contact problems with friction; nonlinear alternating direction method; finite element method;
D O I
10.1002/zamm.200310086
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A class of contact problems with friction in elastostatics is considered. The existence and uniqueness results, the finite element approximation and the mostly used iterative methods are briefly summarized. An algorithm, based on the nonlinear alternating direction method of R. B. Kellogg, is proposed and used to solve an example problem with different contact boundary conditions. (C) 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:136 / 143
页数:8
相关论文
共 30 条
[1]   A QUASI-STATIC FRICTIONAL PROBLEM WITH NORMAL COMPLIANCE [J].
ANDERSSON, LE .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1991, 16 (04) :347-369
[2]  
ANDERSSON LE, 1995, ADV MATH SCI APPL, V8, P249
[3]   On a class of Winkler-type contact problems [J].
Angelov, TA .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 (05) :273-279
[4]  
[Anonymous], 1972, HDB PHYS
[5]   INTERNAL APPROXIMATION OF QUASI-VARIATIONAL INEQUALITIES [J].
CAPATINA, AR ;
COCU, M .
NUMERISCHE MATHEMATIK, 1991, 59 (04) :385-398
[6]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[8]   ON SOME EXISTENCE AND UNIQUENESS RESULTS IN CONTACT PROBLEMS WITH NONLOCAL FRICTION [J].
DEMKOWICZ, L ;
ODEN, JT .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1982, 6 (10) :1075-1093
[9]  
Duvaut G., 1976, GRUNDLEHREN MATH WIS, DOI 10.1007/978-3-642-66165-5
[10]  
GARCIA JRF, 2000, P INT S MTNS PERP FR