Pyridine Dinucleotides from Molecules to Man

被引:28
作者
Fessel, Joshua P. [1 ]
Oldham, William M. [2 ,3 ]
机构
[1] Vanderbilt Univ, Dept Med, Nashville, TN USA
[2] Brigham & Womens Hosp, Dept Med, NRB 630,77 Ave Louis Pasteur, Boston, MA 02115 USA
[3] Harvard Med Sch, Dept Med, Boston, MA USA
关键词
NAD; NADP; metabolism; SIRT; PARP; NICOTINAMIDE-ADENINE-DINUCLEOTIDE; PYRUVATE-DEHYDROGENASE COMPLEX; NAD(+) SALVAGE PATHWAY; ALDOSE REDUCTASE INHIBITION; TISSUE-SPECIFIC REGULATION; PENTOSE-PHOSPHATE PATHWAY; ELECTRON-TRANSPORT CHAIN; COENZYME-A DECARBOXYLASE; FATTY-ACID OXIDATION; NADPH OXIDASE;
D O I
10.1089/ars.2017.7120
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Significance: Pyridine dinucleotides, nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP), were discovered more than 100 years ago as necessary cofactors for fermentation in yeast extracts. Since that time, these molecules have been recognized as fundamental players in a variety of cellular processes, including energy metabolism, redox homeostasis, cellular signaling, and gene transcription, among many others. Given their critical role as mediators of cellular responses to metabolic perturbations, it is unsurprising that dysregulation of NAD and NADP metabolism has been associated with the pathobiology of many chronic human diseases. Recent Advances: A biochemistry renaissance in biomedical research, with its increasing focus on the metabolic pathobiology of human disease, has reignited interest in pyridine dinucleotides, which has led to new insights into the cell biology of NAD(P) metabolism, including its cellular pharmacokinetics, biosynthesis, subcellular localization, and regulation. This review highlights these advances to illustrate the importance of NAD(P) metabolism in the molecular pathogenesis of disease. Critical Issues: Perturbations of NAD(H) and NADP(H) are a prominent feature of human disease; however, fundamental questions regarding the regulation of the absolute levels of these cofactors and the key determinants of their redox ratios remain. Moreover, an integrated topological model of NAD(P) biology that combines the metabolic and other roles remains elusive. Future Directions: As the complex regulatory network of NAD(P) metabolism becomes illuminated, sophisticated new approaches to manipulating these pathways in specific organs, cells, or organelles will be developed to target the underlying pathogenic mechanisms of disease, opening doors for the next generation of redox-based, metabolism-targeted therapies. Antioxid. Redox Signal. 28, 180-212.
引用
收藏
页码:180 / 212
页数:33
相关论文
共 286 条
[1]   Differences among cell types in NAD+ compartmentalization:: A comparison of neurons, astrocytes, and cardiac myocytes [J].
Alano, Conrad C. ;
Tran, Alexandra ;
Tao, Rong ;
Ying, Weihai ;
Karliner, Joel S. ;
Swanson, Raymond A. .
JOURNAL OF NEUROSCIENCE RESEARCH, 2007, 85 (15) :3378-3385
[2]   Nicotinic Acid Adenine Dinucleotide Phosphate Plays a Critical Role in Naive and Effector Murine T Cells but Not Natural Regulatory T Cells [J].
Ali, Ramadan A. ;
Camick, Christina ;
Wiles, Katherine ;
Walseth, Timothy F. ;
Slama, James T. ;
Bhattacharya, Sumit ;
Giovannucci, David R. ;
Wall, Katherine A. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2016, 291 (09) :4503-4522
[3]   SnapShot: Mammalian Sirtuins [J].
Anderson, Kristin A. ;
Green, Michelle F. ;
Huynh, Frank K. ;
Wagner, Gregory R. ;
Hirschey, Matthew D. .
CELL, 2014, 159 (04)
[4]   Mechanism of sirtuin inhibition by nicotinamide:: Altering the NAD+ cosubstrate specificity of a Sir2 enzyme [J].
Avalos, JL ;
Bever, KM ;
Wolberger, C .
MOLECULAR CELL, 2005, 17 (06) :855-868
[5]   PARP-1 Inhibition Increases Mitochondrial Metabolism through SIRT1 Activation [J].
Bai, Peter ;
Canto, Caries ;
Oudart, Hugues ;
Brunyanszki, Attila ;
Cen, Yana ;
Thomas, Charles ;
Yamamoto, Hiroyasu ;
Huber, Aline ;
Kiss, Borbala ;
Houtkooper, Riekelt H. ;
Schoonjans, Kristina ;
Schreiber, Valerie ;
Sauve, Anthony A. ;
Menissier-de Murcia, Josiane ;
Auwerx, Johan .
CELL METABOLISM, 2011, 13 (04) :461-468
[6]   THE EFFECTS OF DIETARY CALORIC RESTRICTION ON MATURITY AND SENESCENCE, WITH PARTICULAR REFERENCE TO FERTILITY AND LONGEVITY [J].
BALL, ZB ;
BARNES, RH ;
VISSCHER, MB .
AMERICAN JOURNAL OF PHYSIOLOGY, 1947, 150 (03) :511-519
[7]   SirT1 Gain of Function Increases Energy Efficiency and Prevents Diabetes in Mice [J].
Banks, Alexander S. ;
Kon, Ning ;
Knight, Colette ;
Matsumoto, Michihiro ;
Gutierrez-Juarez, Roger ;
Rossetti, Luciano ;
Gu, Wei ;
Accili, Domenico .
CELL METABOLISM, 2008, 8 (04) :333-341
[8]   SIRT3 is regulated by nutrient excess and modulates hepatic susceptibility to lipotoxicity [J].
Bao, Jianjun ;
Scott, Iain ;
Lu, Zhongping ;
Pang, Liyan ;
Dimond, Christopher C. ;
Gius, David ;
Sack, Michael N. .
FREE RADICAL BIOLOGY AND MEDICINE, 2010, 49 (07) :1230-1237
[9]   Nicotinamide treatment reduces the levels of oxidative stress, apoptosis, and PARP-1 activity in Aβ (1-42)-induced rat model of Alzheimer's disease [J].
Bayrakdar, E. Turunc ;
Uyanikgil, Y. ;
Kanit, L. ;
Koylu, E. ;
Yalcin, A. .
FREE RADICAL RESEARCH, 2014, 48 (02) :146-158
[10]   The interaction of hepatic lipid and glucose metabolism in liver diseases [J].
Bechmann, Lars P. ;
Hannivoort, Rebekka A. ;
Gerken, Guido ;
Hotamisligil, Goekhan S. ;
Trauner, Michael ;
Canbay, Ali .
JOURNAL OF HEPATOLOGY, 2012, 56 (04) :952-964