Characterizations of the Symmetric T(θ, q)-Classical Orthogonal q-Polynomials

被引:0
作者
Bouras, B. [1 ]
Habbachi, Y. [1 ]
Marcellan, F. [2 ]
机构
[1] Gabes Univ, Coll Sci, Dept Math, Gabes, Tunisia
[2] Univ Carlos III Madrid, Dept Matemat, Madrid, Spain
关键词
Orthogonal polynomials; symmetric polynomials; q-Dunkl-classical orthogonal polynomials; regular linear functionals;
D O I
10.1007/s00009-022-01986-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we give two characterizations for symmetric q-Dunkl-classical orthogonal polynomials. The first one is related to a spectral problem for a second-order linear q-difference differential operator. The second one is given by a distribution equation of Pearson type fulfilled by their corresponding linear functionals. Then, we show that the q(2)-analogue of generalized Hermite and the q(2)-analogue of generalized Gegenbauer polynomials are, up a dilation, the only symmetric q-Dunkl-classical orthogonal polynomials.
引用
收藏
页数:18
相关论文
共 21 条
[1]  
Abdelkarim F., 1997, Results Math, V32, P1
[2]   Characterization of q-Dunkl-classical symmetric orthogonal q-polynomials [J].
Aloui, Baghdadi ;
Souissi, Jihad .
RAMANUJAN JOURNAL, 2022, 57 (04) :1355-1365
[3]  
ALSALAM WA, 1990, NATO ADV SCI I C-MAT, V294, P1
[4]   Classical symmetric orthogonal polynomials of a discrete variable [J].
Area, I ;
Godoy, E ;
Ronveaux, A ;
Zarzo, A .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2004, 15 (01) :1-12
[5]   DIVIDED DIFFERENCE-OPERATORS AND CLASSICAL ORTHOGONAL POLYNOMIALS [J].
ASKEY, R .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1989, 19 (01) :33-37
[6]   Characterization of the Dunkl-classical symmetric orthogonal polynomials [J].
Ben Cheikh, Y. ;
Gaied, M. .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 187 (01) :105-114
[7]   q-Dunkl-classical q-Hermite type polynomials [J].
Ben Cheikh, Youssef ;
Gaied, Mohamed ;
Zaghouani, Ali .
GEORGIAN MATHEMATICAL JOURNAL, 2014, 21 (02) :125-137
[8]  
Bettaibi N., 2009, TAMSUI OXF J MATH SC, V25, P177
[9]   Characterization of q-Dunkl Appell symmetric orthogonal q-polynomials [J].
Bouanani, A. ;
Kheriji, L. ;
Tounsi, M. Ihsen .
EXPOSITIONES MATHEMATICAE, 2010, 28 (04) :325-336
[10]  
Bouras B, 2016, FACTA UNIV-SER MATH, V31, P55