Approximate controllability of fractional neutral stochastic evolution equations in Hilbert spaces with fractional Brownian motion

被引:10
作者
Mourad, Kerboua [1 ]
机构
[1] Guelma Univ, Dept Math, Guelma 24000, Algeria
关键词
Approximate controllability; fractional Sobolev type equation; stochastic system; fixed point technique; fractional stochastic nonlocal condition; fractional Brownian motion; DIFFERENTIAL-EQUATIONS; EXISTENCE; SYSTEMS;
D O I
10.1080/07362994.2017.1386570
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the approximate controllability for Sobolev-type fractional neutral stochastic evolution equations with fractional stochastic nonlocal conditions and fractional Brownian motion in a Hilbert space are studied. The results are obtained by using semigroup theory, fractional calculus, stochastic integrals for fractional Brownian motion, Banach's fixed point theorem, and methods adopted directly from deterministic control problems for the main results. Finally, an example is given to illustrate the application of our result.
引用
收藏
页码:209 / 223
页数:15
相关论文
共 29 条
[1]  
[Anonymous], 1999, MATH SCI ENG
[2]   On concepts of controllability for deterministic and stochastic systems [J].
Bashirov, AE ;
Mahmudov, NI .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (06) :1808-1821
[3]   Neutral stochastic functional differential equations driven by a fractional Brownian motion in a Hilbert space [J].
Boufoussi, Brahim ;
Hajji, Salah .
STATISTICS & PROBABILITY LETTERS, 2012, 82 (08) :1549-1558
[4]   On almost periodic mild solutions for stochastic functional differential equations [J].
Cao, Junfei ;
Yang, Qigui ;
Huang, Zaitang .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (01) :275-286
[5]   Stepanov-like almost automorphy for stochastic processes and applications to stochastic differential equations [J].
Chang, Yong-Kui ;
Zhao, Zhi-Han ;
N'Guerekata, G. M. ;
Ma, Ruyun .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (02) :1130-1139
[6]  
Da Prato G., 2014, STOCHASTIC EQUATIONS, P152, DOI [10.1017/CBO9780511666223, 10.1017/CBO9781107295513]
[7]   Approximate controllability of fractional nonlocal delay semilinear systems in Hilbert spaces [J].
Debbouche, Amar ;
Torres, Delfim F. M. .
INTERNATIONAL JOURNAL OF CONTROL, 2013, 86 (09) :1577-1585
[8]   Nonlocal nonlinear integrodifferential equations of fractional orders [J].
Debbouche, Amar ;
Baleanu, Dumitru ;
Agarwal, Ravi P. .
BOUNDARY VALUE PROBLEMS, 2012,
[9]  
El-Borai M. M., 2006, Adv. Dyn. Syst. Appl., V1, P49
[10]   Some probability densities and fundamental solutions of fractional evolution equations [J].
El-Borai, MM .
CHAOS SOLITONS & FRACTALS, 2002, 14 (03) :433-440