α-Fe2O3 as an anode material with capacity rise and high rate capability for lithium-ion batteries

被引:100
|
作者
Hassan, Mohd Faiz [1 ,2 ]
Guo, Zaiping [2 ,3 ]
Chen, Zhixin [3 ]
Liu, Huakun [2 ]
机构
[1] Univ Malaysia Terengganu, Dept Phys Sci, Kuala Terengganu 21030, Malaysia
[2] Univ Wollongong, Inst Superconducting & Elect Mat, Wollongong, NSW 2522, Australia
[3] Univ Wollongong, Sch Mech Mechatron & Mat Engn, Wollongong, NSW 2522, Australia
基金
澳大利亚研究理事会;
关键词
Microporous materials; Oxides; Chemical synthesis; Raman spectroscopy; Electrochemical properties; SIZED FE2O3-LOADED CARBON; ELECTROCHEMICAL PROPERTIES; MAGNETIC-PROPERTIES; NEGATIVE ELECTRODE; RAMAN; PERFORMANCE; NANOTUBES; FILMS;
D O I
10.1016/j.materresbull.2011.02.011
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report a simple molten salt method to prepare nanosize alpha-Fe2O3, as well as its electrochemical performance as anode material for lithium ion batteries. The structure and morphology were confirmed by Raman spectroscopy, X-ray diffraction, and transmission electron microscopy. The as-prepared alpha-Fe2O3 is a rhombohedral phase of hematite with crystal size in the range of 20-40 nm. The electrochemical measurements were performed using the as-prepared powders as the active material for a lithium-ion cell. The nanosized alpha-Fe2O3 shows excellent cycling performance and rate capability. It also exhibits the feature of capacity increase upon cycling. The outstanding electrochemical performance of the alpha-Fe2O3 can be related to several factors, namely, the short Li+ diffusion length along the porous rhombohedral structures and the nanosized nature of the materials, which decreases the traverse time for electrons and Li+ ions, and reduces the volume expansion to some extent during charge/discharge reactions. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:858 / 864
页数:7
相关论文
共 50 条
  • [1] Porous hematite (α-Fe2O3) nanorods as an anode material with enhanced rate capability in lithium-ion batteries
    Yao, Xiayin
    Tang, Changlin
    Yuan, Guoxia
    Cui, Ping
    Xu, Xiaoxiong
    Liu, Zhaoping
    ELECTROCHEMISTRY COMMUNICATIONS, 2011, 13 (12) : 1439 - 1442
  • [2] High Rate Capability of Fe/FeO/Fe3O4 Composite as Anode Material for Lithium-Ion Batteries
    Shi, L.
    He, Y. D.
    Xia, X. H.
    Jian, Z. M.
    Liu, H. B.
    JOURNAL OF THE IRANIAN CHEMICAL SOCIETY, 2010, 7 (03) : 721 - 726
  • [3] High rate capability of Fe/FeO/Fe3O4 composite as anode material for lithium-ion batteries
    L. Shi
    Y. D. He
    X. H. Xia
    Z. M. Jian
    H. B. Liu
    Journal of the Iranian Chemical Society, 2010, 7 : 721 - 726
  • [4] Electrochemical behavior of nanocrystalline α-Fe2O3 anode material for lithium-ion batteries
    Vasilchina, H.
    Uzunova, S.
    Stankulov, T.
    Momchilov, A.
    Uzunov, I.
    Puresheva, B.
    FUNCTIONAL PROPERTIES OF NANOSTRUCTURED MATERIALS, 2006, 223 : 473 - +
  • [5] α-Fe2O3 Nanorods as Anode Material for Lithium Ion Batteries
    Lin, Yong-Mao
    Abel, Paul R.
    Heller, Adam
    Mullins, C. Buddie
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (22): : 2885 - 2891
  • [6] Porous Fe2O3 Microspheres as Anode for Lithium-Ion Batteries
    Noerochim, L.
    Indra, M. A. T.
    Purwaningsih, H.
    Subhan, A.
    5TH INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS SCIENCES AND TECHNOLOGY (ICAMST 2017), 2018, 367
  • [7] Helical carbon nanofibers modified with Fe2O3 as a high performance anode material for lithium-ion batteries
    Qing, Ting
    Liu, Naiqiang
    Jin, Yongzhong
    Mina, Dang
    Chen, Ge
    DALTON TRANSACTIONS, 2021, 50 (17) : 5819 - 5827
  • [8] Amorphous Fe2O3 as a high-capacity, high-rate and long-life anode material for lithium ion batteries
    Jiang, Yinzhu
    Zhang, Dan
    Li, Yong
    Yuan, Tianzhi
    Bahlawane, Naoufal
    Liang, Chu
    Sun, Wenping
    Lu, Yunhao
    Yan, Mi
    NANO ENERGY, 2014, 4 : 23 - 30
  • [9] Borophene: A promising anode material offering high specific capacity and high rate capability for lithium-ion batteries
    Jiang, H. R.
    Lu, Ziheng
    Wu, M. C.
    Ciucci, Francesco
    Zhao, T. S.
    NANO ENERGY, 2016, 23 : 97 - 104
  • [10] A Core-Shell Fe/Fe2O3 Nanowire as a High-Performance Anode Material for Lithium-Ion Batteries
    Na, Zhaolin
    Huang, Gang
    Liang, Fei
    Yin, Dongming
    Wang, Limin
    CHEMISTRY-A EUROPEAN JOURNAL, 2016, 22 (34) : 12081 - 12087