Effect of synthesis conditions on the nanopowder properties of Ce0.9Zr0.1O2

被引:19
作者
Zimicz, M. G. [2 ]
Fabregas, I. O. [2 ]
Lamas, D. G. [2 ]
Larrondo, S. A. [1 ]
机构
[1] Univ Buenos Aires, Fac Ingn, Dept Ingn Quim, Lab Proc Catalit, RA-1428 Buenos Aires, DF, Argentina
[2] CONICET CITEFA, CINSO Ctr Invest Solidos, RA-1603 Villa Martelli, Buenos Aires, Argentina
关键词
Ceramics; Nanostructures; Oxides; Chemical synthesis; SPRAY-PYROLYSIS; GEL-COMBUSTION; POLYMERIC PRECURSOR; SOLID-SOLUTIONS; MIXED OXIDES; ZIRCONIA; POWDERS; OXIDATION; CATALYSTS; BEHAVIOR;
D O I
10.1016/j.materresbull.2011.02.008
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, the synthesis of nanocrystalline Ce0.9Zr0.1O2 powders via the gel-combustion method, using different fuels, and following either stoichiometric or non-stoichiometric pH-controlled routes is investigated. The objective is to evaluate the effect of synthesis conditions on the textural and morphological properties, and the crystal structure of the synthesized materials. The solids were characterized by nitrogen physisorption, Scanning Electron Microscopy (SEM), X-ray powder diffraction (XPD), and Carbon-Hydrogen-Nitrogen Elemental Analysis (CHN). All the powders exhibited nanometric crystallite size, fluorite-type structure and negligible carbon content. Synthesis conditions strongly affect the average crystallite size, the degree of agglomeration, the specific surface area and the pore volume. Our results indicate that, by controlling the synthesis conditions it is possible to obtain solids with custom-made morphological properties. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:850 / 857
页数:8
相关论文
共 50 条
[41]   Improved electrical conductivity of Ce0.9Gd0.1O1.95 and Ce0.9Sm0.1O1.95 by co-doping [J].
Li, Bin ;
Wei, Xi ;
Pan, Wei .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (07) :3018-3022
[42]   Synthesis of Ce0.75Zr0.25O2 by citrate gel method [J].
Dhage, SR ;
Gaikwad, SP ;
Muthukumar, P ;
Ravi, V .
MATERIALS LETTERS, 2004, 58 (21) :2704-2706
[43]   Effect of two-stage sintering on dielectric properties of BaTi0.9Zr0.1O3 ceramics [J].
Rani, Rekha ;
Rani, Renu ;
Kumar, Parveen ;
Juneja, J. K. ;
Raina, K. K. ;
Prakash, Chandra .
PHASE TRANSITIONS, 2011, 84 (9-10) :843-849
[44]   Structural, optical and dielectric properties of Ce0.9Nd0.1O1.95 nanocrystalline oxygen ion conductors: Effect of sintering temperature [J].
Anirban, Sk. ;
Dutta, A. .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2015, 76 :178-183
[45]   Sawdust as an effective biotemplate for the synthesis of Ce0.8Zr0.2O2 and CuO-Ce0.8Zr0.2O2 catalysts for total CO oxidation [J].
Kaplin, Igor Yu. ;
Lokteva, Ekaterina S. ;
Golubina, Elena V. ;
Maslakov, Konstantin I. ;
Strokova, Natalia E. ;
Chernyak, Sergei A. ;
Lunin, Valery V. .
RSC ADVANCES, 2017, 7 (81) :51359-51372
[46]   A Ni/YSZ composite containing Ce0.9Ca0.1O2-δ particles as an anode for SOFCs [J].
Huang, XQ ;
Liu, ZG ;
Lu, Z ;
Pei, L ;
Zhu, RB ;
Liu, YQ ;
Miao, JP ;
Zhang, ZG ;
Su, WH .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2003, 64 (12) :2379-2384
[47]   Stiffening of nanoscale anatase Ti0.9Zr0.1O2 upon multiple compression cycles [J].
Holbig, E. ;
Dubrovinsky, L. ;
Miyajima, N. ;
Swamy, V. ;
Wirth, R. ;
Prakapenka, V. ;
Kuznetsov, A. .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2008, 69 (09) :2230-2233
[48]   Improvement in dielectric, ferroelectric and ferromagnetic characteristics of Ba0.9Sr0.1Zr0.1Ti0.9O3-NiFe2O4 composites [J].
Jain, Aditya ;
Panwar, Amrish K. ;
Jha, A. K. ;
Sharma, Yogesh .
CERAMICS INTERNATIONAL, 2017, 43 (13) :10253-10262
[49]   Effects of Fuel Contents and Surface Modification on the Sol-gel Combustion Ce0.9 Gd0.1O1.95 Nanopowder [J].
Wattanasiriwech, Darunee ;
Wattanasiriwech, Suthee .
10TH ECO-ENERGY AND MATERIALS SCIENCE AND ENGINEERING SYMPOSIUM, 2013, 34 :524-533
[50]   Ce0.9(Mg,Ni)0.1O2: Composite or Solid Solution [J].
Smirnova, M. N. ;
Nipan, G. D. ;
Kop'eva, M. A. ;
Nikiforova, G. E. ;
Buzanov, G. A. ;
Kozhukhova, E. I. ;
Kozerozhets, I. V. ;
Yapryntsev, A. D. ;
Arkhipenko, A. A. ;
Doronina, M. S. .
RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2023, 68 (07) :822-828