An Evaluation for Quality Inspection of Epitaxial Layer and Heavily-doped 4H-SiC Substrate by Simple Schottky Barrier Diode and MOS Capacitor

被引:0
作者
Chu, Kuan-Wei [1 ]
Tseng, Chun-Wei [2 ]
Tsui, Bing-Yue [2 ]
Wu, Yew-Chung Sermon [1 ]
Yang, Cheng-Juei [3 ]
Hsu, Chuck [3 ]
机构
[1] Natl Yang Ming Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu, Taiwan
[2] Natl Yang Ming Chiao Tung Univ, Inst Elect, Hsinchu, Taiwan
[3] GlobalWafers Co Ltd, Innovat Technol Res Ctr, Hsinchu, Taiwan
来源
2022 IEEE 34TH INTERNATIONAL CONFERENCE ON MICROELECTRONIC TEST STRUCTURES (ICMTS) | 2022年
关键词
SiC; defects; Schottky barrier diode; MOS capacitor;
D O I
10.1109/ICMTS50340.2022.9898247
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Reducing the crystal defects in SiC is an important issue. In this work, we propose a short turn-around method using simple SBD and MOSC devices to reflect the electrically-active defect density in the substrate. Simple SBD and MOSC structures are fabricated on n(-) epi-layer/n(+) substrate or pure n(+) substrate that have different defect densities. The n(-) epi-layer SBDs for high-defect wafers generate high yield loss, a more comprehensive leakage current distribution, and a stronger bias-dependent leakage current than low-defect alternatives. The pure n(+) substrate SBDs of high-defect wafers only reveal a higher leakage level than the low-defect alternatives. This phenomenon may be caused by the variation of doping concentration or Schottky barrier height. The pure n(+) substrate MOSCs show a higher yield loss than the n(-) epi-layer MOSCs based on TZDB, where the leakage level is identical for both the high-defect and the low-defect wafers. It is suggested that the epitaxial quality can be evaluated by using the simple SBD, where the heavily-doped substrate is not suitable. Both the n(-) epi-layer and the pure n(+) substrate MOSCs cannot reflect electrically-active defect densities for the TZDB phenomena.
引用
收藏
页码:107 / 110
页数:4
相关论文
共 16 条
[1]   2.3-kV, 5-A 4H-SiC Ti and Ni JBS Rectifiers manufactured in Commercial Foundry: Impact of Implant Lateral Straggle [J].
Agarwal, Aditi ;
Han, Kijeong ;
Baliga, B. Jayant .
2020 IEEE WORKSHOP ON WIDE BANDGAP POWER DEVICES AND APPLICATIONS IN ASIA (WIPDA ASIA), 2020,
[2]   Structure of the carrot defect in 4H-SiC epitaxial layers [J].
Benamara, M ;
Zhang, X ;
Skowronski, M ;
Ruterana, P ;
Nouet, G ;
Sumakeris, JJ ;
Paisley, MJ ;
O'Loughlin, MJ .
APPLIED PHYSICS LETTERS, 2005, 86 (02) :021905-1
[3]   Development of a World Class Silicon Carbide Substrate Manufacturing Capability [J].
Blevins, J. D. .
IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, 2020, 33 (04) :539-545
[4]  
Brillson L.J., 2005, 2005 INT SEMICONDUCT
[5]  
Burk A. A., 2009, 2009 INT SEMICONDUCT
[6]   Inhomogeneities in Ni/4H-SiC Schottky barriers: Localized fermi-level pinning by defect states [J].
Ewing, D. J. ;
Porter, L. M. ;
Wahab, Q. ;
Ma, X. ;
Sudharshan, T. S. ;
Tumakha, S. ;
Gao, M. ;
Brillson, L. J. .
JOURNAL OF APPLIED PHYSICS, 2007, 101 (11)
[7]   Impact of surface morphology above threading dislocations on leakage current in 4H-SiC diodes [J].
Fujiwara, Hirokazu ;
Naruoka, Hideki ;
Konishi, Masaki ;
Hamada, Kimimori ;
Katsuno, Takashi ;
Ishikawa, Tsuyoshi ;
Watanabe, Yukihiko ;
Endo, Takeshi .
APPLIED PHYSICS LETTERS, 2012, 101 (04)
[8]  
Funaki T, 2006, APPL POWER ELECT CO, P441
[9]   Evolution of threading screw dislocation conversion during solution growth of 4H-SiC [J].
Harada, S. ;
Yamamoto, Y. ;
Seki, K. ;
Horio, A. ;
Mitsuhashi, T. ;
Tagawa, M. ;
Ujihara, T. .
APL MATERIALS, 2013, 1 (02)
[10]   Photoluminescence of Frank-type defects on the basal plane in 4H-SiC epilayers [J].
Kamata, Isaho ;
Zhang, Xuan ;
Tsuchida, Hidekazu .
APPLIED PHYSICS LETTERS, 2010, 97 (17)