On the regularity of the pressure field of Brenier's weak solutions to incompressible Euler equations

被引:23
作者
Ambrosio, Luigi [1 ]
Figalli, Alessio [1 ,2 ]
机构
[1] SNS Pisa, I-56126 Pisa, Italy
[2] Ecole Normale Super Lyon, F-69364 Lyon, France
关键词
D O I
10.1007/s00526-007-0123-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we improve the regularity in time of the gradient of the pressure field arising in Brenier's variational weak solutions (Comm Pure Appl Math 52:411-452, 1999) to incompressible Euler equations. This improvement is necessary to obtain that the pressure field is not only a measure, but a function in L-loc(2) ((0, T); BVloc(D)). In turn, this is a fundamental ingredient in the analysis made by Ambrosio and Figalli ( 2007, preprint) of the necessary and sufficient optimality conditions for the variational problem by Brenier (J Am Mat Soc 2:225-255, 1989; Comm Pure Appl Math 52:411-452, 1999).
引用
收藏
页码:497 / 509
页数:13
相关论文
共 10 条
[1]  
AMBROSIO L, 2007, GEODESICS SPACE MEAS
[2]  
Arnold V. I., 1966, ANN I FOURIER GRENOB, V16, P319
[3]  
Benamou JD, 2000, NUMER MATH, V84, P375, DOI 10.1007/s002119900117
[4]  
Brenier Y, 1999, COMMUN PUR APPL MATH, V52, P411, DOI 10.1002/(SICI)1097-0312(199904)52:4<411::AID-CPA1>3.0.CO
[5]  
2-3
[6]   THE DUAL LEAST ACTION PROBLEM FOR AN IDEAL, INCOMPRESSIBLE FLUID [J].
BRENIER, Y .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 122 (04) :323-351
[7]   A homogenized model for vortex sheets [J].
Brenier, Y .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 138 (04) :319-353
[8]  
Brenier Y., 1989, J AM MATH SOC, V2, P225, DOI 10.1090/S0894-0347-1989-0969419-8
[9]   GENERALIZED FLUID-FLOWS, THEIR APPROXIMATION AND APPLICATIONS [J].
SHNIRELMAN, AI .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1994, 4 (05) :586-620
[10]  
SHNIRELMAN AI, 1985, MAT SBORNIK, V128, P82