Complexity of a delayed predator-prey model with impulsive harvest and holling type II functional response

被引:89
作者
Zeng, Guangzhao [1 ]
Wang, Fengyan [2 ]
Nieto, Juan J. [3 ]
机构
[1] Shaoguan Univ, Dept Math, Shaoguan 512005, Guangdong, Peoples R China
[2] Jimei Univ, Coll Sci, Xiamen 361021, Fujian, Peoples R China
[3] Univ Santiago Compostela, Dept Anal Matemat, Fac Matemat, Santiago De Compostela 15782, Spain
来源
ADVANCES IN COMPLEX SYSTEMS | 2008年 / 11卷 / 01期
关键词
impulsive delayed differential equations; extinction; existence of periodic solution; coincidence degree; chaotic solution; quasi-periodic solution;
D O I
10.1142/S0219525908001519
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study an impulsive delay differential predator-prey model with Holling type II functional response. The stability of the trivial equilibrium is analyzed by means of impulsive Floquet theory providing a sufficient condition for extinction. Using coincidence degree theory we show the existence of positive periodic solutions. The system is then analyzed numerically, revealing that the presence of delays and impulses may lead to chaotic solutions, quasi-periodic solutions, or multiple periodic solutions. Several simulations and examples are presented.
引用
收藏
页码:77 / 97
页数:21
相关论文
共 48 条
[1]  
Bainov D, 1993, IMPULSIVE DIFFERENTI
[2]  
BATTELLI F, 1997, CHAOS SINGULAR IMPUL, V28, P655
[3]  
Bazykin A. D., 1998, NONLINEAR DYNAMICS I, V11
[4]   Convergence results in a well-known delayed predator-prey system [J].
Beretta, E ;
Kuang, Y .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 204 (03) :840-853
[5]  
CHEN L, 2003, MATH MOD METH APPL S, P108
[6]   Dynamics of infectious diseases and pulse vaccination:: Teasing apart the embedded resonance effects [J].
Choisy, Marc ;
Guegan, Jean-Francois ;
Rohani, Pejman .
PHYSICA D-NONLINEAR PHENOMENA, 2006, 223 (01) :26-35
[7]   PERIODIC TIME-DEPENDENT PREDATOR-PREY SYSTEMS [J].
CUSHING, JM .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1977, 32 (01) :82-95
[8]   A general framework for modeling tumor-immune system competition and immunotherapy: Mathematical analysis and biomedical inferences [J].
d'Onofrio, A .
PHYSICA D-NONLINEAR PHENOMENA, 2005, 208 (3-4) :220-235
[9]  
Davies B., 1999, EXPLORING CHAOS THEO
[10]  
Freedman H.I., 1980, DETERMINISTIC MATH M