Cloning-free CRISPR/Cas system facilitates functional cassette knock-in in mice

被引:214
作者
Aida, Tomomi [1 ]
Chiyo, Keiho [1 ]
Usami, Takako [2 ]
Ishikubo, Harumi [1 ]
Imahashi, Risa [1 ]
Wada, Yusaku [6 ]
Tanaka, Kenji F. [5 ]
Sakuma, Tetsushi [4 ]
Yamamoto, Takashi [4 ]
Tanaka, Kohichi [1 ,3 ,7 ]
机构
[1] Tokyo Med & Dent Univ, Med Res Inst, Lab Mol Neurosci, Tokyo 1138510, Japan
[2] TMDU, MRI, Lab Recombinant Anim, Tokyo 1010062, Japan
[3] TMDU, CBIR, Tokyo 1138510, Japan
[4] Hiroshima Univ, Grad Sch Sci, Dept Math & Life Sci, Hiroshima 7398526, Japan
[5] Keio Univ, Sch Med, Dept Neuropsychiat, Tokyo 1608582, Japan
[6] FASMAC Co Ltd, Atsugi, Kanagawa 2430021, Japan
[7] CREST, JST, Saitama 3320012, Japan
来源
GENOME BIOLOGY | 2015年 / 16卷
关键词
ONE-STEP GENERATION; OFF-TARGET CLEAVAGE; MEDIATED DELIVERY; CAS NUCLEASES; DNA CLEAVAGE; CELL CLONES; GENOME; RNA; MOUSE; CRISPR-CAS9;
D O I
10.1186/s13059-015-0653-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Although the CRISPR/Cas system has enabled one-step generation of knockout mice, low success rates of cassette knock-in limit its application range. Here we show that cloning-free, direct nuclear delivery of Cas9 protein complex with chemically synthesized dual RNAs enables highly efficient target digestion, leading to generation of knock-in mice carrying a functional cassette with up to 50% efficiency, compared with just 10% by a commonly used method consisting of Cas9 mRNA and single guide RNA. Our cloning-free CRISPR/Cas system facilitates rapid one-step generation of cassette knock-in mice, accelerating functional genomic research by providing various in vivo genetic tools.
引用
收藏
页数:11
相关论文
共 46 条
[1]  
Aida T., 2015, NEUROPSYCHOPHARMACOL
[2]   Translating human genetics into mouse: The impact of ultra-rapid in vivo genome editing [J].
Aida, Tomomi ;
Imahashi, Risa ;
Tanaka, Kohichi .
DEVELOPMENT GROWTH & DIFFERENTIATION, 2014, 56 (01) :34-45
[3]   Overstimulation of NMDA Receptors Impairs Early Brain Development in vivo [J].
Aida, Tomomi ;
Ito, Yoshimasa ;
Takahashi, Yuko K. ;
Tanaka, Kohichi .
PLOS ONE, 2012, 7 (05)
[4]   Genetic Analysis of Zinc-Finger Nuclease-Induced Gene Targeting in Drosophila [J].
Bozas, Ana ;
Beumer, Kelly J. ;
Trautman, Jonathan K. ;
Carroll, Dana .
GENETICS, 2009, 182 (03) :641-651
[5]   Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century [J].
Capecchi, MR .
NATURE REVIEWS GENETICS, 2005, 6 (06) :507-512
[6]   Genome Engineering with Targetable Nucleases [J].
Carroll, Dana .
ANNUAL REVIEW OF BIOCHEMISTRY, VOL 83, 2014, 83 :409-439
[7]   Multiplex Genome Engineering Using CRISPR/Cas Systems [J].
Cong, Le ;
Ran, F. Ann ;
Cox, David ;
Lin, Shuailiang ;
Barretto, Robert ;
Habib, Naomi ;
Hsu, Patrick D. ;
Wu, Xuebing ;
Jiang, Wenyan ;
Marraffini, Luciano A. ;
Zhang, Feng .
SCIENCE, 2013, 339 (6121) :819-823
[8]   CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III [J].
Deltcheva, Elitza ;
Chylinski, Krzysztof ;
Sharma, Cynthia M. ;
Gonzales, Karine ;
Chao, Yanjie ;
Pirzada, Zaid A. ;
Eckert, Maria R. ;
Vogel, Joerg ;
Charpentier, Emmanuelle .
NATURE, 2011, 471 (7340) :602-+
[9]   The new frontier of genome engineering with CRISPR-Cas9 [J].
Doudna, Jennifer A. ;
Charpentier, Emmanuelle .
SCIENCE, 2014, 346 (6213) :1077-+
[10]  
Fenno LE, 2014, NAT METHODS, V11, P763, DOI [10.1038/NMETH.2996, 10.1038/nmeth.2996]