Flexible/shape-versatile, bipolar all-solid-state lithium-ion batteries prepared by multistage printing

被引:148
作者
Kim, Se-Hee [1 ]
Choi, Keun-Ho [1 ]
Cho, Sung-Ju [1 ]
Yoo, JongTae [1 ]
Lee, Seong-Sun [1 ]
Lee, Sang-Young [1 ]
机构
[1] Ulsan Natl Inst Sci & Technol, Sch Energy & Chem Engn, Dept Energy Engn, Ulsan 44919, South Korea
基金
新加坡国家研究基金会;
关键词
COMPOSITE POLYMER ELECTROLYTE; CARBON NANOTUBES; CONDUCTOR; CATHODE; SILICA;
D O I
10.1039/c7ee01630a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Bipolar all-solid-state lithium-ion batteries (LIBs) have attracted considerable attention as a promising approach to address the ever-increasing demand for high energy and safety. However, the use of (sulfide-or oxide-based) inorganic solid electrolytes, which have been the most extensively investigated electrolytes in LIBs, causes problems with respect to mechanical flexibility and form factors in addition to their longstanding issues such as chemical/electrochemical instability, interfacial contact resistance and manufacturing processability. Here, we develop a new class of flexible/shape-versatile bipolar all-solid-state LIBs via ultraviolet (UV) curing-assisted multistage printing, which does not require the high-pressure/high-temperature sintering processes adopted for typical inorganic electrolyte-based all-solid-state LIBs. Instead of inorganic electrolytes, a flexible/nonflammable gel electrolyte consisting of a sebaconitrile-based electrolyte and a semi-interpenetrating polymer network skeleton is used as a core element in the printed electrodes and gel composite electrolytes (GCEs, acting as an ion-conducting separator membrane). Rheology tuning (toward thixotropic fluid behavior) of the electrode and GCE pastes, in conjunction with solvent-drying-free multistage printing, enables the monolithic integration of in-series/in-plane bipolar-stacked cells onto complex-shaped objects. Because of the aforementioned material and process novelties, the printed bipolar LIBs show exceptional flexibility, form factors, charge/discharge behavior and abuse tolerance (nonflammability) that far exceed those achievable with inorganic-electrolyte-based conventional bipolar cell technologies.
引用
收藏
页码:321 / 330
页数:10
相关论文
共 37 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   All-inkjet-printed, solid-state flexible supercapacitors on paper [J].
Choi, Keun-Ho ;
Yoo, JongTae ;
Lee, Chang Kee ;
Lee, Sang-Young .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (09) :2812-2821
[3]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[4]   Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries [J].
Fu, Kun ;
Gong, Yunhui ;
Dai, Jiaqi ;
Gong, Amy ;
Han, Xiaogang ;
Yao, Yonggang ;
Wang, Chengwei ;
Wang, Yibo ;
Chen, Yanan ;
Yan, Chaoyi ;
Li, Yiju ;
Wachsman, Eric D. ;
Hu, Liangbing .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (26) :7094-7099
[5]   A method for the coating of silica spheres with an ultrathin layer of pristine single-walled carbon nanotubes [J].
Fujigaya, Tsuyohiko ;
Yoo, JongTae ;
Nakashima, Naotoshi .
CARBON, 2011, 49 (02) :468-476
[6]   Development of Bipolar All-solid-state Lithium Battery Based on Quasi-solid-state Electrolyte Containing Tetraglyme-LiTFSA Equimolar Complex [J].
Gambe, Yoshiyuki ;
Sun, Yan ;
Honma, Itaru .
SCIENTIFIC REPORTS, 2015, 5
[7]   UV-curable semi-interpenetrating polymer network-integrated, highly bendable plastic crystal composite electrolytes for shape-conformable all-solid-state lithium ion batteries [J].
Ha, Hyo-Jeong ;
Kil, Eun-Hye ;
Kwon, Yo Han ;
Kim, Je Young ;
Lee, Chang Kee ;
Lee, Sang-Young .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (04) :6491-6499
[8]   A self-standing, UV-cured polymer networks-reinforced plastic crystal composite electrolyte for a lithium-ion battery [J].
Ha, Hyo-Jeong ;
Kwon, Yo Han ;
Kim, Je Young ;
Lee, Sang-Young .
ELECTROCHIMICA ACTA, 2011, 57 :40-45
[9]   Getting solid [J].
Hu, Yong-Sheng .
NATURE ENERGY, 2016, 1
[10]  
Janek J, 2016, NAT ENERGY, V1, DOI [10.1038/NENERGY.2016.141, 10.1038/nenergy.2016.141]