Learning Design Rules for Selective Oxidation Catalysts from High-Throughput Experimentation and Artificial Intelligence

被引:27
作者
Foppa, Lucas [1 ,6 ]
Sutton, Christopher [1 ,2 ]
Ghiringhelli, Luca M. [1 ,3 ]
De, Sandip [4 ]
Loeser, Patricia [5 ]
Schunk, Stephan A. [4 ,5 ]
Schaefer, Ansgar [4 ]
Scheffler, Matthias [1 ,6 ]
机构
[1] Fritz Haber Inst Max Planck Gesell, NOMAD Lab, D-14195 Berlin, Germany
[2] Univ South Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA
[3] Humboldt Univ, FAIRmat, D-12489 Berlin, Germany
[4] BASF SE, D-67065 Ludwigshafen, Germany
[5] Hte GmbH, D-69123 Heidelberg, Germany
[6] Humboldt Univ, NOMAD Lab, D-12489 Berlin, Germany
关键词
artificial intelligence; subgroup discovery; high-throughput experimentation; selective oxidation; propylene; ruthenium;
D O I
10.1021/acscatal.1c04793
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The design of heterogeneous catalysts is challenged by the complexity of materials and processes that govern reactivity and by the fact that the number of good catalysts is very small in comparison to the number of possible materials. Here, we show how the subgroup-discovery (SGD) artificial-intelligence approach can be applied to an experimental plus theoretical data set to identify constraints on key physicochemical parameters, the so-called SG rules, which exclusively describe materials and reaction conditions with outstanding catalytic performance. By using high-throughput experimentation, 120 SiO2-supported catalysts containing ruthenium, tungsten, and phosphorus were synthesized and tested in the catalytic oxidation of propylene. As candidate descriptive parameters, the temperature and 10 parameters related to the composition and chemical nature of the catalyst materials, derived from calculated free-atom properties, were offered. The temperature, the phosphorus content, and the composition-weighted electronegativity are identified as key parameters describing high yields toward the value-added oxygenate products acrolein and acrylic acid. The SG rules not only reflect the underlying processes particularly associated with high performance but also guide the design of more complex catalysts containing up to five elements in their composition.
引用
收藏
页码:2223 / 2232
页数:10
相关论文
共 41 条
  • [31] Heterogeneous Catalysis
    Schloegl, Robert
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (11) : 3465 - 3520
  • [32] αII-(V1-xWx) OPO4 catalysts for the selective oxidation of n-butane to maleic anhydride
    Schulz, C.
    Roy, S. C.
    Wittich, K.
    d'Alnoncourt, R. Naumann
    Linke, S.
    Strempel, V. E.
    Frank, B.
    Glaum, R.
    Rosowski, F.
    [J]. CATALYSIS TODAY, 2019, 333 : 113 - 119
  • [33] Identifying domains of applicability of machine learning models for materials science
    Sutton, Christopher
    Boley, Mario
    Ghiringhelli, Luca M.
    Rupp, Matthias
    Vreeken, Jilles
    Scheffler, Matthias
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [34] Suzuki K, 2019, CHEMCATCHEM, V11, P4537, DOI 10.1002/cctc.201900971
  • [35] Combinatorial optimization and synthesis of multiple promoted MoVNbTe catalysts for oxidation of propane to acrylic acid
    Tompos, Andras
    Sanchez-Sanchez, Maricruz
    Vegvari, Lajos
    Szijjarto, Gabor P.
    Margitfalvi, Jozsef L.
    Trunschke, Annette
    Schloegl, Robert
    Wanninger, Klaus
    Mestl, Gerhard
    [J]. CATALYSIS TODAY, 2021, 363 (363) : 45 - 54
  • [36] The Impact of the Bulk Structure on Surface Dynamics of Complex Mo-V-based Oxide Catalysts
    Trunschke, Annette
    Noack, Johannes
    Trojanov, Sergej
    Girgsdies, Frank
    Lunkenbein, Thomas
    Pfeifer, Verena
    Haevecker, Michael
    Kube, Pierre
    Sprung, Christoph
    Rosowski, Frank
    Schloegl, Robert
    [J]. ACS CATALYSIS, 2017, 7 (04): : 3061 - 3071
  • [37] Statistical Analysis of Coordination Environments in Oxides
    Waroquiers, David
    Gonze, Xavier
    Rignanese, Gian-Marco
    Welker-Nieuwoudt, Cathrin
    Rosowski, Frank
    Goebel, Michael
    Schenk, Stephan
    Degelmann, Peter
    Andre, Rute
    Glaum, Robert
    Hautier, Geoffroy
    [J]. CHEMISTRY OF MATERIALS, 2017, 29 (19) : 8346 - 8360
  • [38] Welker-Nieuwoudt C., 2016, WOLFRAMPHOSPHATE REO
  • [39] Enabling Catalyst Discovery through Machine Learning and High-Throughput Experimentation
    Williams, Travis
    McCullough, Katherine
    Lauterbach, Jochen A.
    [J]. CHEMISTRY OF MATERIALS, 2020, 32 (01) : 157 - 165
  • [40] Wrobel S, 1997, LECT NOTES ARTIF INT, V1263, P78