Learning Design Rules for Selective Oxidation Catalysts from High-Throughput Experimentation and Artificial Intelligence

被引:31
作者
Foppa, Lucas [1 ,6 ]
Sutton, Christopher [1 ,2 ]
Ghiringhelli, Luca M. [1 ,3 ]
De, Sandip [4 ]
Loeser, Patricia [5 ]
Schunk, Stephan A. [4 ,5 ]
Schaefer, Ansgar [4 ]
Scheffler, Matthias [1 ,6 ]
机构
[1] Fritz Haber Inst Max Planck Gesell, NOMAD Lab, D-14195 Berlin, Germany
[2] Univ South Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA
[3] Humboldt Univ, FAIRmat, D-12489 Berlin, Germany
[4] BASF SE, D-67065 Ludwigshafen, Germany
[5] Hte GmbH, D-69123 Heidelberg, Germany
[6] Humboldt Univ, NOMAD Lab, D-12489 Berlin, Germany
关键词
artificial intelligence; subgroup discovery; high-throughput experimentation; selective oxidation; propylene; ruthenium;
D O I
10.1021/acscatal.1c04793
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The design of heterogeneous catalysts is challenged by the complexity of materials and processes that govern reactivity and by the fact that the number of good catalysts is very small in comparison to the number of possible materials. Here, we show how the subgroup-discovery (SGD) artificial-intelligence approach can be applied to an experimental plus theoretical data set to identify constraints on key physicochemical parameters, the so-called SG rules, which exclusively describe materials and reaction conditions with outstanding catalytic performance. By using high-throughput experimentation, 120 SiO2-supported catalysts containing ruthenium, tungsten, and phosphorus were synthesized and tested in the catalytic oxidation of propylene. As candidate descriptive parameters, the temperature and 10 parameters related to the composition and chemical nature of the catalyst materials, derived from calculated free-atom properties, were offered. The temperature, the phosphorus content, and the composition-weighted electronegativity are identified as key parameters describing high yields toward the value-added oxygenate products acrolein and acrylic acid. The SG rules not only reflect the underlying processes particularly associated with high performance but also guide the design of more complex catalysts containing up to five elements in their composition.
引用
收藏
页码:2223 / 2232
页数:10
相关论文
共 41 条
[31]   Heterogeneous Catalysis [J].
Schloegl, Robert .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (11) :3465-3520
[32]   αII-(V1-xWx) OPO4 catalysts for the selective oxidation of n-butane to maleic anhydride [J].
Schulz, C. ;
Roy, S. C. ;
Wittich, K. ;
d'Alnoncourt, R. Naumann ;
Linke, S. ;
Strempel, V. E. ;
Frank, B. ;
Glaum, R. ;
Rosowski, F. .
CATALYSIS TODAY, 2019, 333 :113-119
[33]   Identifying domains of applicability of machine learning models for materials science [J].
Sutton, Christopher ;
Boley, Mario ;
Ghiringhelli, Luca M. ;
Rupp, Matthias ;
Vreeken, Jilles ;
Scheffler, Matthias .
NATURE COMMUNICATIONS, 2020, 11 (01)
[34]   Statistical Analysis and Discovery of Heterogeneous Catalysts Based on Machine Learning from Diverse Published Data [J].
Suzuki, Keisuke ;
Toyao, Takashi ;
Maeno, Zen ;
Takakusagi, Satoru ;
Shimizu, Ken-ichi ;
Takigawa, Ichigaku .
CHEMCATCHEM, 2019, 11 (18) :4537-4547
[35]   Combinatorial optimization and synthesis of multiple promoted MoVNbTe catalysts for oxidation of propane to acrylic acid [J].
Tompos, Andras ;
Sanchez-Sanchez, Maricruz ;
Vegvari, Lajos ;
Szijjarto, Gabor P. ;
Margitfalvi, Jozsef L. ;
Trunschke, Annette ;
Schloegl, Robert ;
Wanninger, Klaus ;
Mestl, Gerhard .
CATALYSIS TODAY, 2021, 363 (363) :45-54
[36]   The Impact of the Bulk Structure on Surface Dynamics of Complex Mo-V-based Oxide Catalysts [J].
Trunschke, Annette ;
Noack, Johannes ;
Trojanov, Sergej ;
Girgsdies, Frank ;
Lunkenbein, Thomas ;
Pfeifer, Verena ;
Haevecker, Michael ;
Kube, Pierre ;
Sprung, Christoph ;
Rosowski, Frank ;
Schloegl, Robert .
ACS CATALYSIS, 2017, 7 (04) :3061-3071
[37]   Statistical Analysis of Coordination Environments in Oxides [J].
Waroquiers, David ;
Gonze, Xavier ;
Rignanese, Gian-Marco ;
Welker-Nieuwoudt, Cathrin ;
Rosowski, Frank ;
Goebel, Michael ;
Schenk, Stephan ;
Degelmann, Peter ;
Andre, Rute ;
Glaum, Robert ;
Hautier, Geoffroy .
CHEMISTRY OF MATERIALS, 2017, 29 (19) :8346-8360
[38]  
Welker-Nieuwoudt C., 2016, WOLFRAMPHOSPHATE REO
[39]   Enabling Catalyst Discovery through Machine Learning and High-Throughput Experimentation [J].
Williams, Travis ;
McCullough, Katherine ;
Lauterbach, Jochen A. .
CHEMISTRY OF MATERIALS, 2020, 32 (01) :157-165
[40]  
Wrobel S, 1997, LECT NOTES ARTIF INT, V1263, P78