Integrability of Hurwitz partition functions

被引:64
作者
Alexandrov, A. [1 ,2 ,3 ]
Mironov, A. [3 ,4 ]
Morozov, A. [3 ]
Natanzon, S. [3 ,5 ,6 ]
机构
[1] LPTENS, Paris, France
[2] IPhT, Gif Sur Yvette, France
[3] ITEP, Moscow, Russia
[4] PN Lebedev Phys Inst, Moscow, Russia
[5] Higher Sch Econ, Dept Math, Moscow, Russia
[6] Moscow MV Lomonosov State Univ, AN Belozersky Inst, Moscow, Russia
关键词
MATRIX MODELS; KONTSEVICH MODEL; EQUIVALENCE; EQUATIONS;
D O I
10.1088/1751-8113/45/4/045209
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Partition functions often become tau-functions of integrable hierarchies, if they are considered dependent on infinite sets of parameters called time variables. The Hurwitz partition functions Z = Sigma(R) d(R)(2-k) chi R-R(t((1))) .... chi(R)(t((k)))exp(Sigma(n) xi C-n(R)(n))depend on two types of such time variables, t and xi. KP/Toda integrability in t requires that k <= 2 and also that C-R(n) are selected in a rather special way, in particular the naive cut-and-join operators are not allowed for n > 2. Integrability in. further restricts the choice of CR(n), forbidding, for example, the free cumulants. It also requires that k <= 1. The quasi-classical integrability (the WDVV equations) is naturally present in xi variables, but also requires a careful definition of the generating function.
引用
收藏
页数:10
相关论文
共 48 条
[1]  
Alexandrov A, 2012, INTEGRABILITY UNPUB
[2]  
Alexandrov A, 2010, ARXIV10055715
[3]  
Alexandrov A, 2010, ARXIV10094887
[4]  
Alexandrov A, 2012, INTEGRABILITY UNPUB
[5]  
[Anonymous], ARXIVHEPTH9409190
[6]  
[Anonymous], 1984, Adv. Stud. Pure Math.
[7]  
Balantekin A, 2010, ARXIV10113859
[8]  
Biane P, 2003, LECT NOTES MATH, V1815, P185
[9]  
Borot G, 2009, ARXIV09061206
[10]  
BOUCHARD V, 2007, ARXIV07091458