Representation theorems for generators of backward stochastic differential equations and their applications

被引:34
作者
Jiang, L [1 ]
机构
[1] China Univ Min & Technol, Dept Math, Xuzhou 221008, Peoples R China
[2] Shandong Univ, Sch Math & Syst Sci, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
backward stochastic differential equation; representation theorem; conditional Lebesgue point; Lebesgue generator; g-expectation; converse comparison theorem;
D O I
10.1016/j.spa.2005.06.008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove that the generator g of a backward stochastic differential equation (BSDE) can be represented by the solutions of the corresponding BSDEs at point (t, y, z) if and only if t is a conditional Lebesgue point of generator g with parameters (y, z). By this conclusion, we prove that, if g is a Lebesgue generator and g is independent of y, then, Jensen's inequality for g-expectation holds if and only if g is super homogeneous; we also obtain a converse comparison theorem for deterministic generators of BSDEs. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:1883 / 1903
页数:21
相关论文
共 11 条
[1]   A CONVERSE COMPARISON THEOREM FOR BSDES AND RELATED PROPERTIES OF g-EXPECTATION [J].
Briand, Philippe ;
Coquet, Francois ;
Hu, Ying ;
Memin, Jean ;
Peng, Shige .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2000, 5 :101-117
[2]  
Chen ZH, 2001, T NONFERR METAL SOC, V11, P725
[3]   Jensen's inequality for g-expectation, Part 2 [J].
Chen, ZJ ;
Kulperger, R ;
Jiang, L .
COMPTES RENDUS MATHEMATIQUE, 2003, 337 (12) :797-800
[4]   A property of backward stochastic differential equations [J].
Chen, ZJ .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (04) :483-488
[5]   A general converse comparison theorem for backward stochastic differential equations [J].
Coquet, F ;
Hu, Y ;
Mémin, J ;
Peng, S .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (06) :577-581
[6]   Backward stochastic differential equations in finance [J].
El Karoui, N ;
Peng, S ;
Quenez, MC .
MATHEMATICAL FINANCE, 1997, 7 (01) :1-71
[7]  
Hewitt E., 1978, Real and Abstract Analysis
[8]  
JIANG L, 2004, CR ACAD SCI I-MATH, V338, P575
[9]  
Ma J., 1999, Lecture Notes in Mathematics, V1702
[10]   ADAPTED SOLUTION OF A BACKWARD STOCHASTIC DIFFERENTIAL-EQUATION [J].
PARDOUX, E ;
PENG, SG .
SYSTEMS & CONTROL LETTERS, 1990, 14 (01) :55-61