Nano-Oncology: Clinical Application for Cancer Therapy and Future Perspectives

被引:36
作者
Riggio, Cristina [1 ]
Pagni, Eleonora [1 ]
Raffa, Vittoria [1 ]
Cuschieri, Alfred [1 ]
机构
[1] Scuola Super StAnna, Inst Life Sci, I-56127 Pisa, Italy
关键词
POLYMERIC MICELLE FORMULATION; ALBUMIN-BOUND PACLITAXEL; PHASE-II TRIAL; CREMOPHOR-FREE; GENEXOL-PM; IN-VITRO; NANOPARTICLES; DELIVERY; LIPOSOMES; CISPLATIN;
D O I
10.1155/2011/164506
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nano-oncology, the application of Nanomedicine to cancer diagnosis and treatment, has the potential to transform clinical oncology by enhancing the efficacy of cancer chemotherapy for a wide spectrum of invasive cancers. It achieves this by enabling novel drug delivery systems which target the tumour site with several functional molecules, including tumour-specific ligands, antibodies, cytotoxic agents, and imaging probes simultaneously thereby improving tumour response rates in addition to significant reduction of the systemic toxicity associated with current chemotherapy regimens. For this reason, nano-oncology is attracting considerable scientific interest and a growing investment by the global pharmaceutical industry. Several therapeutic nano-carriers have been approved for clinical use and others are undergoing phase II and III clinical trials. This paper describes the current approved formulations, such as liposomes and polymeric nanoparticles, and discusses the overall present status of nano-oncology as an emerging branch of nanomedicine and its future perspectives in cancer and therapy.
引用
收藏
页数:10
相关论文
共 40 条
[1]   Responsive polymers in controlled drug delivery [J].
Bajpai, A. K. ;
Shukla, Sandeep K. ;
Bhanu, Smitha ;
Kankane, Sanjana .
PROGRESS IN POLYMER SCIENCE, 2008, 33 (11) :1088-1118
[2]  
BANGHAM A, 1989, CC/LIFE SCI, P14
[3]   Emerging nanomedicines for early cancer detection and improved treatment: Current perspective and future promise [J].
Bharali, Dhruba J. ;
Mousa, Shaker A. .
PHARMACOLOGY & THERAPEUTICS, 2010, 128 (02) :324-335
[4]   PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery [J].
Chan, Juliana M. ;
Zhang, Liangfang ;
Yuet, Kai P. ;
Liao, Grace ;
Rhee, June-Wha ;
Langer, Robert ;
Farokhzad, Omid C. .
BIOMATERIALS, 2009, 30 (08) :1627-1634
[5]   Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery [J].
Cheng, Jianjun ;
Teply, Benjamin A. ;
Sherifi, Ines ;
Sung, Josephine ;
Luther, Gaurav ;
Gu, Frank X. ;
Levy-Nissenbaum, Etgar ;
Radovic-Moreno, Aleksandar F. ;
Langer, Robert ;
Farokhzad, Omid C. .
BIOMATERIALS, 2007, 28 (05) :869-876
[6]   Targeted hyperthermia using metal nanoparticles [J].
Cherukuri, Paul ;
Glazer, Evan S. ;
Curleya, Steven A. .
ADVANCED DRUG DELIVERY REVIEWS, 2010, 62 (03) :339-345
[7]   Nanoparticle therapeutics: an emerging treatment modality for cancer [J].
Davis, Mark E. ;
Chen, Zhuo ;
Shin, Dong M. .
NATURE REVIEWS DRUG DISCOVERY, 2008, 7 (09) :771-782
[8]   Cancer nanotechnology: Opportunities and challenges [J].
Ferrari, M .
NATURE REVIEWS CANCER, 2005, 5 (03) :161-171
[9]   Polarized angular dependent light scattering properties of bare and PEGylated gold nanoshells [J].
Fu, Kun ;
Sun, Jiantang ;
Lin, Alex W. H. ;
Wang, Hui ;
Halas, Naomi J. ;
Drezek, Rebekah A. .
CURRENT NANOSCIENCE, 2007, 3 (02) :167-170
[10]   Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy [J].
Gobin, Andre M. ;
Lee, Min Ho ;
Halas, Naomi J. ;
James, William D. ;
Drezek, Rebekah A. ;
West, Jennifer L. .
NANO LETTERS, 2007, 7 (07) :1929-1934