A model of anthrax toxin lethal factor bound to protective antigen

被引:51
作者
Lacy, DB
Lin, HC
Melnyk, RA
Schueler-Furman, O
Reither, L
Cunningham, K
Baker, D
Collier, RJ
机构
[1] Harvard Univ, Sch Med, Dept Microbiol & Mol Genet, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Grad Grp Biol Chem & Mol Pharmacol, Boston, MA 02115 USA
[3] Univ Washington, Dept Biochem, Seattle, WA 98195 USA
[4] Univ Washington, Howard Hughes Med Inst, Seattle, WA 98195 USA
关键词
computation; docking; electrostatic;
D O I
10.1073/pnas.0508259102
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Anthrax toxin is made up of three proteins: the edema factor (EF), lethal factor (LF) enzymes, and the multifunctional protective antigen (PA). Proteolytically activated PA heptamerizes, binds the EF/LF enzymes, and forms a pore that allows for EF/LF passage into host cells. Using directed mutagenesis, we identified three LF-PA contact points defined by a specific disulfide crosslink and two pairs of complementary charge-reversal mutations. These contact points were consistent with the lowest energy LF-PA complex found by using Rosetta protein-protein docking. These results illustrate how biochemical and computational methods can be combined to produce reliable models of large complexes. The model shows that EF and LF bind through a highly electrostatic interface, with their flexible N-terminal region positioned at the entrance of the heptameric PA pore and thus poised to initiate translocation in an N- to C-terminal direction.
引用
收藏
页码:16409 / 16414
页数:6
相关论文
empty
未找到相关数据