Differences in cohort study data affect external validation of artificial intelligence models for predictive diagnostics of dementia-lessons for translation into clinical practice

被引:35
作者
Birkenbihl, Colin [1 ,2 ]
Emon, Mohammad Asif [1 ,2 ]
Vrooman, Henri [3 ,4 ]
Westwood, Sarah [5 ]
Lovestone, Simon [5 ]
Hofmann-Apitius, Martin [1 ,2 ]
Froehlich, Holger [1 ,2 ,6 ]
机构
[1] Fraunhofer Inst Algorithms & Sci Comp SCAI, Dept Bioinformat, Schloss Birlinghoven, D-53757 St Augustin, Germany
[2] Rheinische Friedrich Wilhelms Univ Bonn, Bonn Aachen Int Ctr IT, D-53115 Bonn, Germany
[3] Univ Med Ctr, Dept Radiol & Nucl Med, Erasmus MC, Rotterdam, Netherlands
[4] Univ Med Ctr, Dept Med Informat, Erasmus MC, Rotterdam, Netherlands
[5] Univ Oxford, Warneford Hosp, Dept Psychiat, Oxford, England
[6] UCB Biosci GmbH, Alfred Nobel Str 10, D-40789 Monheim, Germany
基金
美国国家卫生研究院; 欧盟地平线“2020”; 加拿大健康研究院;
关键词
Predictive preventive personalized medicine (3 PM; PPPM); Disease risk prediction; Cohort data; Model validation; Machine learning; Disease modeling; Artificial intelligence; Individualized patient profiling; Interdisciplinary; Multiprofessional; Risk modeling; Survival analysis; Bioinformatics; Alzheimer's disease; Neurodegeneration; Precision medicine; Cohort comparison; Health data; Medical data; Data science; Translational medicine; Digital clinic; Propensity score matching; Sampling bias; Model performance; Dementia; ALZHEIMERS-DISEASE; PROPENSITY SCORE; BIOMARKERS; PREVENTION; TRIALS;
D O I
10.1007/s13167-020-00216-z
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Artificial intelligence (AI) approaches pose a great opportunity for individualized, pre-symptomatic disease diagnosis which plays a key role in the context of personalized, predictive, and finally preventive medicine (PPPM). However, to translate PPPM into clinical practice, it is of utmost importance that AI-based models are carefully validated. The validation process comprises several steps, one of which is testing the model on patient-level data from an independent clinical cohort study. However, recruitment criteria can bias statistical analysis of cohort study data and impede model application beyond the training data. To evaluate whether and how data from independent clinical cohort studies differ from each other, this study systematically compares the datasets collected from two major dementia cohorts, namely, the Alzheimer's Disease Neuroimaging Initiative (ADNI) and AddNeuroMed. The presented comparison was conducted on individual feature level and revealed significant differences among both cohorts. Such systematic deviations can potentially hamper the generalizability of results which were based on a single cohort dataset. Despite identified differences, validation of a previously published, ADNI trained model for prediction of personalized dementia risk scores on 244 AddNeuroMed subjects was successful: External validation resulted in a high prediction performance of above 80% area under receiver operator characteristic curve up to 6 years before dementia diagnosis. Propensity score matching identified a subset of patients from AddNeuroMed, which showed significantly smaller demographic differences to ADNI. For these patients, an even higher prediction performance was achieved, which demonstrates the influence systematic differences between cohorts can have on validation results. In conclusion, this study exposes challenges in external validation of AI models on cohort study data and is one of the rare cases in the neurology field in which such external validation was performed. The presented model represents a proof of concept that reliable models for personalized predictive diagnostics are feasible, which, in turn, could lead to adequate disease prevention and hereby enable the PPPM paradigm in the dementia field.
引用
收藏
页码:367 / 376
页数:10
相关论文
共 38 条
[1]   COMPUTERIZED CONSTRUCTION OF A MATCHED SAMPLE [J].
ALTHAUSER, RP ;
RUBIN, D .
AMERICAN JOURNAL OF SOCIOLOGY, 1970, 76 (02) :325-+
[2]  
[Anonymous], 2016, EPMA J
[3]  
Barrett JC, 2019, DEBATE ARCHAEOL, P1
[4]  
Castaneda Christian, 2015, J Clin Bioinforma, V5, P4, DOI 10.1186/s13336-015-0019-3
[5]   Deep learning for clustering of multivariate clinical patient trajectories with missing values [J].
de Jong, Johann ;
Emon, Mohammad Asif ;
Wu, Ping ;
Karki, Reagon ;
Sood, Meemansa ;
Godard, Patrice ;
Ahmad, Ashar ;
Vrooman, Henri ;
Hofmann-Apitius, Martin ;
Froehlich, Holger .
GIGASCIENCE, 2019, 8 (11)
[6]   Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data [J].
Denny, Joshua C. ;
Bastarache, Lisa ;
Ritchie, Marylyn D. ;
Carroll, Robert J. ;
Zink, Raquel ;
Mosley, Jonathan D. ;
Field, Julie R. ;
Pulley, Jill M. ;
Ramirez, Andrea H. ;
Bowton, Erica ;
Basford, Melissa A. ;
Carrell, David S. ;
Peissig, Peggy L. ;
Kho, Abel N. ;
Pacheco, Jennifer A. ;
Rasmussen, Luke V. ;
Crosslin, David R. ;
Crane, Paul K. ;
Pathak, Jyotishman ;
Bielinski, Suzette J. ;
Pendergrass, Sarah A. ;
Xu, Hua ;
Hindorff, Lucia A. ;
Li, Rongling ;
Manolio, Teri A. ;
Chute, Christopher G. ;
Chisholm, Rex L. ;
Larson, Eric B. ;
Jarvik, Gail P. ;
Brilliant, Murray H. ;
McCarty, Catherine A. ;
Kullo, Iftikhar J. ;
Haines, Jonathan L. ;
Crawford, Dana C. ;
Masys, Daniel R. ;
Roden, Dan M. .
NATURE BIOTECHNOLOGY, 2013, 31 (12) :1102-+
[7]   A Deep Learning Model to Predict a Diagnosis of Alzheimer Disease by Using 18F-FDG PET of the Brain [J].
Ding, Yuming ;
Sohn, Jae Ho ;
Kawczynski, Michael G. ;
Trivedi, Hari ;
Harnish, Roy ;
Jenkins, Nathaniel W. ;
Lituiev, Dmytro ;
Copeland, Timothy P. ;
Aboian, Mariam S. ;
Aparici, Carina Mari ;
Behr, Spencer C. ;
Flavell, Robert R. ;
Huang, Shih-Ying ;
Zalocusky, Kelly A. ;
Nardo, Lorenzo ;
Seo, Youngho ;
Hawkins, Randall A. ;
Pampaloni, Miguel Hernandez ;
Hadley, Dexter ;
Franc, Benjamin L. .
RADIOLOGY, 2019, 290 (02) :456-464
[8]   The interactive effect of demographic and clinical factors on hippocampal volume: A multicohort study on 1958 cognitively normal individuals [J].
Ferreira, Daniel ;
Hansson, Oskar ;
Barroso, Jose ;
Molina, Yaiza ;
Machado, Alejandra ;
Andres Hernandez-Cabrera, Juan ;
Muehlboeck, J-Sebastian ;
Stomrud, Erik ;
Nagga, Katarina ;
Lindberg, Olof ;
Ames, David ;
Kalpouzos, Gregoria ;
Fratiglioni, Laura ;
Backman, Lars ;
Graff, Caroline ;
Mecocci, Patrizia ;
Vellas, Bruno ;
Tsolaki, Magda ;
Kloszewska, Iwona ;
Soininen, Hilkka ;
Lovestone, Simon ;
Ahlstrom, Hakan ;
Lind, Lars ;
Larsson, Elna-Marie ;
Wahlund, Lars-Olof ;
Simmons, Andrew ;
Westman, Eric .
HIPPOCAMPUS, 2017, 27 (06) :653-667
[9]   Machine learning for comprehensive forecasting of Alzheimer's Disease progression [J].
Fisher, Charles K. ;
Smith, Aaron M. ;
Walsh, Jonathan R. ;
Simone, Adam J. ;
Edgar, Chris ;
Jack, Clifford R. ;
Holtzman, David ;
Russell, David ;
Hill, Derek ;
Grosset, Donald ;
Wood, Fred ;
Vanderstichele, Hugo ;
Morris, John ;
Blennown, Kaj ;
Marek, Ken ;
Shaw, Leslie M. ;
Albert, Marilyn ;
Weiner, Michael ;
Fox, Nick ;
Aisen, Paul ;
Cole, Patricia E. ;
Petersen, Ronald ;
Sherer, Todd ;
Kubick, Wayne .
SCIENTIFIC REPORTS, 2019, 9 (1)
[10]   Memantine for the Treatment of Dementia: A Review on its Current and Future Applications [J].
Folch, Jaume ;
Busquets, Oriol ;
Ettcheto, Miren ;
Sanchez-Lopez, Elena ;
Dario Castro-Torres, Ruben ;
Verdaguer, Ester ;
Luisa Garcia, Maria ;
Olloquequi, Jordi ;
Casadesus, Gemma ;
Beas-Zarate, Carlos ;
Pelegri, Carme ;
Vilaplana, Jordi ;
Auladell, Carme ;
Camins, Antoni .
JOURNAL OF ALZHEIMERS DISEASE, 2018, 62 (03) :1223-1240