Cryo-EM structures of the TMEM16A calcium-activated chloride channel

被引:243
作者
Dang, Shangyu [1 ]
Feng, Shengjie [2 ]
Tien, Jason [2 ]
Peters, Christian J. [2 ]
Bulkley, David [1 ]
Lolicato, Marco [3 ]
Zhao, Jianhua [1 ]
Zuberbuhler, Kathrin [4 ]
Ye, Wenlei [2 ]
Qi, Lijun [2 ]
Chen, Tingxu [2 ]
Craik, Charles S. [4 ]
Jan, Yuh Nung [1 ,2 ,5 ]
Minor, Daniel L., Jr. [1 ,3 ,6 ,7 ]
Cheng, Yifan [1 ,5 ]
Jan, Lily Yeh [1 ,2 ,5 ]
机构
[1] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94158 USA
[2] Univ Calif San Francisco, Dept Physiol, San Francisco, CA 94158 USA
[3] Univ Calif San Francisco, Cardiovasc Res Inst, San Francisco, CA 94158 USA
[4] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94158 USA
[5] Univ Calif San Francisco, Howard Hughes Med Inst, San Francisco, CA 94158 USA
[6] Univ Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94158 USA
[7] Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, Berkeley, CA 94720 USA
关键词
INDEPENDENT ACTIVATION; ELECTRON-MICROSCOPY; MEMBRANE-PROTEINS; VISUALIZATION; VALIDATION; EXPRESSION; PORES; MODEL;
D O I
10.1038/nature25024
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Calcium-activated chloride channels (CaCCs) encoded by TMEM16A(1-3) control neuronal signalling, smooth muscle contraction, airway and exocrine gland secretion, and rhythmic movements of the gastrointestinal system(4-7). To understand how CaCCs mediate and control anion permeation to fulfil these physiological functions, knowledge of the mammalian TMEM16A structure and identification of its pore-lining residues are essential. TMEM16A forms a dimer with two pores(8,9). Previous CaCC structural analyses have relied on homology modelling of a homologue (nhTMEM16) from the fungus Nectria haematococca that functions primarily as a lipid scramblase(10-12), as well as subnanometre-resolution electron cryo-microscopy(12). Here we present de novo atomic structures of the transmembrane domains of mouse TMEM16A in nanodiscs and in lauryl maltose neopentyl glycol as determined by single-particle electron cryo-microscopy. These structures reveal the ion permeation pore and represent different functional states. The structure in lauryl maltose neopentyl glycol has one Ca2+ ion resolved within each monomer with a constricted pore; this is likely to correspond to a closed state, because a CaCC with a single Ca2+ occupancy requires membrane depolarization in order to open (C.J.P.etal., manuscript submitted). The structure in nanodiscs has two Ca2+ ions per monomer and its pore is in a closed conformation; this probably reflects channel rundown, which is the gradual loss of channel activity that follows prolonged CaCC activation in 1 mM Ca2+. Our mutagenesis and electrophysiological studies, prompted by analyses of the structures, identified ten residues distributed along the pore that interact with permeant anions and affect anion selectivity, as well as seven porelining residues that cluster near pore constrictions and regulate channel gating. Together, these results clarify the basis of CaCC anion conduction.
引用
收藏
页码:426 / +
页数:19
相关论文
共 52 条
[1]   PHENIX: a comprehensive Python']Python-based system for macromolecular structure solution [J].
Adams, Paul D. ;
Afonine, Pavel V. ;
Bunkoczi, Gabor ;
Chen, Vincent B. ;
Davis, Ian W. ;
Echols, Nathaniel ;
Headd, Jeffrey J. ;
Hung, Li-Wei ;
Kapral, Gary J. ;
Grosse-Kunstleve, Ralf W. ;
McCoy, Airlie J. ;
Moriarty, Nigel W. ;
Oeffner, Robert ;
Read, Randy J. ;
Richardson, David C. ;
Richardson, Jane S. ;
Terwilliger, Thomas C. ;
Zwart, Peter H. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 :213-221
[2]   Microscale fluorescent thermal stability assay for membrane proteins [J].
Alexandrov, Alexander I. ;
Mileni, Mauro ;
Chien, Ellen Y. T. ;
Hanson, Michael A. ;
Stevens, Raymond C. .
STRUCTURE, 2008, 16 (03) :351-359
[3]   Nanodisc-T-m: Rapid functional assessment of nanodisc reconstituted membrane proteins by CPM assay [J].
Ashok, Yashwanth ;
Jaakola, Veli-Pekka .
METHODSX, 2016, 3 :212-218
[4]  
Barad BA, 2015, NAT METHODS, V12, P943, DOI [10.1038/nmeth.3541, 10.1038/NMETH.3541]
[5]   Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions [J].
Brown, Alan ;
Long, Fei ;
Nicholls, Robert A. ;
Toots, Jaan ;
Emsley, Paul ;
Murshudov, Garib .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2015, 71 :136-153
[6]   Structural basis for phospholipid scrambling in the TMEM16 family [J].
Brunner, Janine D. ;
Schenck, Stephan ;
Dutzler, Raimund .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2016, 39 :61-70
[7]   X-ray structure of a calcium-activated TMEM16 lipid scramblase [J].
Brunner, Janine D. ;
Lim, Novandy K. ;
Schenck, Stephan ;
Duerst, Alessia ;
Dutzler, Raimund .
NATURE, 2014, 516 (7530) :207-+
[8]   TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity [J].
Caputo, Antonella ;
Caci, Emanuela ;
Ferrera, Loretta ;
Pedemonte, Nicoletta ;
Barsanti, Cristina ;
Sondo, Elvira ;
Pfeffer, Ulrich ;
Ravazzolo, Roberto ;
Zegarra-Moran, Olga ;
Galietta, Luis J. V. .
SCIENCE, 2008, 322 (5901) :590-594
[9]   MolProbity: all-atom structure validation for macromolecular crystallography [J].
Chen, Vincent B. ;
Arendall, W. Bryan, III ;
Headd, Jeffrey J. ;
Keedy, Daniel A. ;
Immormino, Robert M. ;
Kapral, Gary J. ;
Murray, Laura W. ;
Richardson, Jane S. ;
Richardson, David C. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 :12-21
[10]  
DeLano WL., 2002, PYMOL MOL GRAPHICS S