Optimal control and filtering for nonstandard singularly perturbed linear systems

被引:5
作者
Kecman, V [1 ]
Gajic, Z
机构
[1] Univ Auckland, Dept Mech Engn, Auckland 1, New Zealand
[2] Rutgers State Univ, Dept Elect & Comp Engn, Piscataway, NJ 08855 USA
关键词
D O I
10.2514/2.4388
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
[No abstract available]
引用
收藏
页码:362 / 365
页数:4
相关论文
共 50 条
[31]   On the exact decomposition of algebraic Riccati equation of nonstandard singularly perturbed control systems [J].
Kecman, V ;
Gajic, Z .
PROCEEDINGS OF THE 1997 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1997, :2270-2271
[32]   Optimal control of singularly perturbed systems with inequality constraints [J].
Naidu, DS ;
Banda, SS ;
Buffington, JL .
AIAA GUIDANCE, NAVIGATION, AND CONTROL CONFERENCE, VOLS 1-3: A COLLECTION OF TECHNICAL PAPERS, 1999, :883-891
[33]   On the value function of singularly perturbed optimal control systems [J].
Artstein, Z .
2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, :432-437
[34]   An Overview of Optimal Control Methods for Singularly Perturbed Systems [J].
Nie, Hao ;
Li, Jinna .
2023 IEEE 12TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE, DDCLS, 2023, :751-756
[35]   New results for near-optimal control of linear multiparameter singularly perturbed systems [J].
Mukaidani, H ;
Xu, H ;
Mizukami, K .
AUTOMATICA, 2003, 39 (12) :2157-2167
[36]   Linear-Quadratic Optimal Control Problem for Singularly Perturbed Systems with Small Delays [J].
Glizer, Valery Y. .
NONLINEAR ANALYSIS AND OPTIMIZATION II: OPTIMIZATION, 2010, 514 :155-188
[37]   NONSTANDARD SINGULARLY PERTURBED CONTROL-SYSTEMS AND DIFFERENTIAL-ALGEBRAIC EQUATIONS [J].
MCCLAMROCH, NH ;
KRISHNAN, H .
INTERNATIONAL JOURNAL OF CONTROL, 1992, 55 (05) :1239-1253
[38]   NEAR OPTIMAL SMOOTHING FOR SINGULARLY PERTURBED LINEAR-SYSTEMS [J].
ALTSHULER, D ;
HADDAD, AH .
AUTOMATICA, 1978, 14 (01) :81-87
[39]   Optimal sinusoidal disturbances rejection for singularly perturbed linear systems [J].
Zhang, BL ;
Tang, GY .
DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2006, 13 :991-998
[40]   Optimal deterministic disturbances rejection for singularly perturbed linear systems [J].
Zhang Baolin Tang Gongyou Gao Dexin Coll of Information Science and Engineering Ocean Univ of China Qingdao PR China Dept of Information and Mathematics Sciences Jiliang Univ Hangzhou PR China Coll of Automation and Electronic Engineering Qingdao Univ of Science and Technology Qingdao PR China .
Journal of Systems Engineering and Electronics, 2006, (04) :824-828