Fast approximation by periodic kernel-based lattice-point interpolation with application in uncertainty quantification

被引:11
作者
Kaarnioja, Vesa [1 ]
Kazashi, Yoshihito [2 ]
Kuo, Frances Y. [1 ]
Nobile, Fabio [2 ]
Sloan, Ian H. [1 ]
机构
[1] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Ecole Polytech Fed Lausanne, Inst Math, CSQI, CH-1015 Lausanne, Switzerland
关键词
41A15; 41A63; 65D07; 65D15; 65T40; MONTE CARLO INTEGRATION; ELLIPTIC PDES; SPACES;
D O I
10.1007/s00211-021-01242-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the kernel-based approximation of a multivariate periodic function by interpolation at the points of an integration lattice-a setting that, as pointed out by Zeng et al. (Monte Carlo and Quasi-Monte Carlo Methods 2004, Springer, New York, 2006) and Zeng et al. (Constr. Approx. 30: 529-555, 2009), allows fast evaluation by fast Fourier transform, so avoiding the need for a linear solver. The main contribution of the paper is the application to the approximation problem for uncertainty quantification of elliptic partial differential equations, with the diffusion coefficient given by a random field that is periodic in the stochastic variables, in the model proposed recently by Kaarnioja et al. (SIAM J Numer Anal 58(2): 1068-1091, 2020). The paper gives a full error analysis, and full details of the construction of lattices needed to ensure a good (but inevitably not optimal) rate of convergence and an error bound independent of dimension. Numerical experiments support the theory.
引用
收藏
页码:33 / 77
页数:45
相关论文
共 29 条
[1]   Tight error bounds for rank-1 lattice sampling in spaces of hybrid mixed smoothness [J].
Byrenheid, Glenn ;
Kaemmerer, Lutz ;
Ullrich, Tino ;
Volkmer, Toni .
NUMERISCHE MATHEMATIK, 2017, 136 (04) :993-1034
[2]  
Ciarlet PG, 2002, The Finite Element Method for Elliptic Problems
[3]  
Cools R., 2020, CELEBRATING 75 YEARS, V754, P93, DOI DOI 10.1090/CONM/754/15150
[4]   FAST COMPONENT-BY-COMPONENT CONSTRUCTION OF LATTICE ALGORITHMS FOR MULTIVARIATE APPROXIMATION WITH POD AND SPOD WEIGHTS [J].
Cools, Ronald ;
Kuo, Frances Y. ;
Nuyens, Dirk ;
Sloan, Ian H. .
MATHEMATICS OF COMPUTATION, 2021, 90 (328) :787-812
[5]  
DEBOOR C, 1966, J MATH MECH, V15, P953
[6]  
Gantner R.N., 2018, MONTE CARLO QUASIMON, P249, DOI [DOI 10.1007/978-3-319-91436-713, DOI 10.1007/978-3-319-91436-7_13]
[7]   QUASI-MONTE CARLO INTEGRATION FOR AFFINE-PARAMETRIC, ELLIPTIC PDEs: LOCAL SUPPORTS AND PRODUCT WEIGHTS [J].
Gantner, Robert N. ;
Herrmann, Lukas ;
Schwab, Christoph .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (01) :111-135
[8]  
Golomb M., 1959, On numerical approximation, P117
[9]   Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients [J].
Graham, I. G. ;
Kuo, F. Y. ;
Nichols, J. A. ;
Scheichl, R. ;
Schwab, Ch. ;
Sloan, I. H. .
NUMERISCHE MATHEMATIK, 2015, 131 (02) :329-368
[10]   Reproducing Kernel Hilbert Spaces for Parametric Partial Differential Equations [J].
Griebel, Michael ;
Rieger, Christian .
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2017, 5 (01) :111-137