One-sided measurement-device-independent quantum key distribution

被引:12
作者
Cao, Wen-Fei
Zhen, Yi-Zheng
Zheng, Yu-Lin
Li, Li [1 ]
Chen, Zeng-Bing [1 ]
Liu, Nai-Le [1 ]
Chen, Kai [1 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
CRYPTOGRAPHY; SECURITY; TIME; SYSTEMS; ATTACK; STATES;
D O I
10.1103/PhysRevA.97.012313
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Measurement-device-independent quantum key distribution (MDI-QKD) protocol was proposed to remove all the detector side channel attacks, while its security relies on the trusted encoding systems. Here we propose a one-sided MDI-QKD (1SMDI-QKD) protocol, which enjoys detection loophole-free advantage, and at the same time weakens the state preparation assumption in MDI-QKD. The 1SMDI-QKD can be regarded as a modified MDI-QKD, in which Bob's encoding system is trusted, while Alice's is uncharacterized. For the practical implementation, we also provide a scheme by utilizing coherent light source with an analytical two decoy state estimation method. Simulation with realistic experimental parameters shows that the protocol has a promising performance, and thus can be applied to practical QKD applications.
引用
收藏
页数:7
相关论文
共 71 条
[1]   Device-independent security of quantum cryptography against collective attacks [J].
Acin, Antonio ;
Brunner, Nicolas ;
Gisin, Nicolas ;
Massar, Serge ;
Pironio, Stefano ;
Scarani, Valerio .
PHYSICAL REVIEW LETTERS, 2007, 98 (23)
[2]   Arbitrarily Loss-Tolerant Einstein-Podolsky-Rosen Steering Allowing a Demonstration over 1 km of Optical Fiber with No Detection Loophole [J].
Bennet, A. J. ;
Evans, D. A. ;
Saunders, D. J. ;
Branciard, C. ;
Cavalcanti, E. G. ;
Wiseman, H. M. ;
Pryde, G. J. .
PHYSICAL REVIEW X, 2012, 2 (03)
[3]  
Bennett C.H., 1984, PROC IEEE INT C COMP, P175, DOI DOI 10.1016/J.TCS.2014.05.025
[4]   Quantum cryptographic network based on quantum memories [J].
Biham, E ;
Huttner, B ;
Mor, T .
PHYSICAL REVIEW A, 1996, 54 (04) :2651-2658
[5]   One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering [J].
Branciard, Cyril ;
Cavalcanti, Eric G. ;
Walborn, Stephen P. ;
Scarani, Valerio ;
Wiseman, Howard M. .
PHYSICAL REVIEW A, 2012, 85 (01)
[6]   Limitations on practical quantum cryptography [J].
Brassard, G ;
Lütkenhaus, N ;
Mor, T ;
Sanders, BC .
PHYSICAL REVIEW LETTERS, 2000, 85 (06) :1330-1333
[7]   Side-Channel-Free Quantum Key Distribution [J].
Braunstein, Samuel L. ;
Pirandola, Stefano .
PHYSICAL REVIEW LETTERS, 2012, 108 (13)
[8]   Laser Damage Helps the Eavesdropper in Quantum Cryptography [J].
Bugge, Audun Nystad ;
Sauge, Sebastien ;
Ghazali, Aina Mardhiyah M. ;
Skaar, Johannes ;
Lydersen, Lars ;
Makarov, Vadim .
PHYSICAL REVIEW LETTERS, 2014, 112 (07)
[9]   Finite-key analysis for measurement-device-independent quantum key distribution [J].
Curty, Marcos ;
Xu, Feihu ;
Cui, Wei ;
Lim, Charles Ci Wen ;
Tamaki, Kiyoshi ;
Lo, Hoi-Kwong .
NATURE COMMUNICATIONS, 2014, 5
[10]   QUANTUM CRYPTOGRAPHY BASED ON BELL THEOREM [J].
EKERT, AK .
PHYSICAL REVIEW LETTERS, 1991, 67 (06) :661-663