Improving power for rare-variant tests by integrating external controls

被引:14
作者
Lee, Seunggeun [1 ,2 ]
Kim, Sehee [1 ]
Fuchsberger, Christian [1 ,2 ,3 ]
机构
[1] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Ctr Stat Genet, Ann Arbor, MI 48109 USA
[3] Univ Lubeck, European Acad Bolzano Bozen, Ctr Biomed, Bolzano, Italy
基金
奥地利科学基金会;
关键词
Rare-variant test; external controls; next-generation sequencing; KERNEL MACHINE REGRESSION; PHENOTYPE ASSOCIATION; LINEAR-MODELS; GENE LEVEL; TRAITS; EQUIVALENCE;
D O I
10.1002/gepi.22057
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Due to the drop in sequencing cost, the number of sequenced genomes is increasing rapidly. To improve power of rare-variant tests, these sequenced samples could be used as external control samples in addition to control samples from the study itself. However, when using external controls, possible batch effects due to the use of different sequencing platforms or genotype calling pipelines can dramatically increase type I error rates. To address this, we propose novel summary statistics based single and gene-or region-based rare-variant tests that allow the integration of external controls while controlling for type I error. Our approach is based on the insight that batch effects on a given variant can be assessed by comparing odds ratio estimates using internal controls only vs. using combined control samples of internal and external controls. From simulation experiments and the analysis of data from age-related macular degeneration and type 2 diabetes studies, we demonstrate that our method can substantially improve power while controlling for type I error rate.
引用
收藏
页码:610 / 619
页数:10
相关论文
共 20 条
[1]   Temporal dynamics and genetic control of transcription in the human prefrontal cortex [J].
Colantuoni, Carlo ;
Lipska, Barbara K. ;
Ye, Tianzhang ;
Hyde, Thomas M. ;
Tao, Ran ;
Leek, Jeffrey T. ;
Colantuoni, Elizabeth A. ;
Elkahloun, Abdel G. ;
Herman, Mary M. ;
Weinberger, Daniel R. ;
Kleinman, Joel E. .
NATURE, 2011, 478 (7370) :519-U117
[2]   TREATMENT OF VECTOR VARIABLES [J].
ESCOUFIER, Y .
BIOMETRICS, 1973, 29 (04) :751-760
[3]  
Escoufier Y., 1970, Echantillonnage dans une population de variables aleatoires reelles
[4]   A Comparison Study of Fixed and Mixed Effect Models for Gene Level Association Studies of Complex Traits [J].
Fan, Ruzong ;
Chiu, Chi-yang ;
Jung, Jeesun ;
Weeks, Daniel E. ;
Wilson, Alexander F. ;
Bailey-Wilson, Joan E. ;
Amos, Christopher I. ;
Chen, Zhen ;
Mills, James L. ;
Xiong, Momiao .
GENETIC EPIDEMIOLOGY, 2016, 40 (08) :702-721
[5]   Set-Based Tests for Genetic Association in Longitudinal Studies [J].
He, Zihuai ;
Zhang, Min ;
Lee, Seunggeun ;
Smith, Jennifer A. ;
Guo, Xiuqing ;
Palmas, Walter ;
Kardia, Sharon L. R. ;
Roux, Ana V. Diez ;
Mukherjee, Bhramar .
BIOMETRICS, 2015, 71 (03) :606-615
[6]   Equivalence of Kernel Machine Regression and Kernel Distance Covariance for Multidimensional Phenotype Association Studies [J].
Hua, Wen-Yu ;
Ghosh, Debashis .
BIOMETRICS, 2015, 71 (03) :812-820
[7]  
Josse J, 2014, MEASURES DEPENDENCE
[8]   KEGG as a reference resource for gene and protein annotation [J].
Kanehisa, Minoru ;
Sato, Yoko ;
Kawashima, Masayuki ;
Furumichi, Miho ;
Tanabe, Mao .
NUCLEIC ACIDS RESEARCH, 2016, 44 (D1) :D457-D462
[9]   Powerful and Adaptive Testing for Multi-trait and Multi-SNP Associations with GWAS and Sequencing Data [J].
Kim, Junghi ;
Zhang, Yiwei ;
Pan, Wei .
GENETICS, 2016, 203 (02) :715-+
[10]   LONGITUDINAL DATA-ANALYSIS USING GENERALIZED LINEAR-MODELS [J].
LIANG, KY ;
ZEGER, SL .
BIOMETRIKA, 1986, 73 (01) :13-22