Disruption mitigation with high-pressure helium gas injection on EAST tokamak

被引:26
作者
Chen, D. L. [1 ]
Shen, B. [1 ]
Granetz, R. S. [3 ]
Qian, J. P. [1 ]
Zhuang, H. D. [1 ]
Zeng, L. [1 ]
Duan, Y. [1 ]
Shi, T. [1 ]
Wang, H. [1 ]
Sun, Y. [1 ]
Xiao, B. J. [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Plasma Phys, POB 1126, Hefei 230031, Anhui, Peoples R China
[2] Univ Sci & Technol China, Sch Nucl Sci & Technol, Hefei 230031, Anhui, Peoples R China
[3] MIT Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA
基金
中国国家自然科学基金;
关键词
disruption mitigation; Halo current; VDE; radiation power;
D O I
10.1088/1741-4326/aaa139
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
High pressure noble gas injection is a promising technique to mitigate the effect of disruptions in tokamaks. In this paper, results of mitigation experiments with low-Z massive gas injection (helium) on the EAST tokamak are reported. A fast valve has been developed and successfully implemented on EAST, with valve response time. <= 150 mu s, capable of injecting up to 7 x 10(22) particles, corresponding to 300 times the plasma inventory. Different amounts of helium gas were injected into stable plasmas in the preliminary experiments. It is seen that a small amount of helium gas (N-He similar or equal to Nplasma) can not terminate a discharge, but can trigger MHD activity. Injection of 40 times the plasma inventory impurity (N-He similar or equal to 40 x N-plasma) can effectively radiate away part of the thermal energy and make the electron density increase rapidly. The mitigation result is that the current quench time and vertical displacement can both be reduced significantly, without resulting in significantly higher loop voltage. This also reduces the risk of runaway electron generation. As the amount of injected impurity gas increases, the gas penetration time decreases slowly and asymptotes to (similar to 7 ms). In addition, the impurity gas jet has also been injected into VDEs, which are more challenging to mitigate that stable plasmas.
引用
收藏
页数:7
相关论文
共 28 条
[1]   Study of plasma termination using high-Z noble gas puffing in the JT-60U tokamak [J].
Bakhtiari, M ;
Tamai, H ;
Kawano, Y ;
Kramer, GJ ;
Isayama, A ;
Nakano, T ;
Kamiya, Y ;
Yoshino, R ;
Miura, Y ;
Kusama, Y ;
Nishida, Y .
NUCLEAR FUSION, 2005, 45 (05) :318-325
[2]   Tokamak halo currents [J].
Boozer, Allen H. .
PHYSICS OF PLASMAS, 2013, 20 (08)
[3]   Characterization of plasma current quench during disruption in EAST tokamak [J].
Chen Da-Long ;
Robert, Granetz ;
Shen Biao ;
Yang Fei ;
Qian Jin-Ping ;
Xiao Bing-Jia .
CHINESE PHYSICS B, 2015, 24 (02)
[4]   Study of the radiated energy loss during massive gas injection mitigated disruptions on EAST [J].
Duan, Y. M. ;
Hao, Z. K. ;
Hu, L. Q. ;
Wang, L. ;
Xu, P. ;
Xu, L. Q. ;
Zhuang, H. D. .
JOURNAL OF NUCLEAR MATERIALS, 2015, 463 :727-730
[5]   The ITPA disruption database [J].
Eidietis, N. W. ;
Gerhardt, S. P. ;
Granetz, R. S. ;
Kawano, Y. ;
Lehnen, M. ;
Lister, J. B. ;
Pautasso, G. ;
Riccardo, V. ;
Tanna, R. L. ;
Thornton, A. J. .
NUCLEAR FUSION, 2015, 55 (06)
[6]   Mitigation of disruptions by fast helium gas puffs [J].
Finken, KH ;
Mank, G ;
Krämer-Flecken, A ;
Jaspers, R .
NUCLEAR FUSION, 2001, 41 (11) :1651-1661
[7]   Interaction of scrape-off layer currents with magnetohydrodynamical instabilities in tokamak plasmas [J].
Fitzpatrick, Richard .
PHYSICS OF PLASMAS, 2007, 14 (06)
[8]   Gas jet disruption mitigation studies on Alcator C-Mod and DIII-D [J].
Granetz, R. S. ;
Hollmann, E. M. ;
Whyte, D. G. ;
Izzo, V. A. ;
Antar, G. Y. ;
Bader, A. ;
Bakhtiari, M. ;
Biewer, T. ;
Boedo, J. A. ;
Evans, T. E. ;
Hutchinson, I. H. ;
Jernigan, T. C. ;
Gray, D. S. ;
Groth, M. ;
Humphreys, D. A. ;
Lasnier, C. J. ;
Moyer, R. A. ;
Parks, P. B. ;
Reinke, M. L. ;
Rudakov, D. L. ;
Strait, E. J. ;
Terry, J. L. ;
Wesley, J. ;
West, W. P. ;
Wurden, G. ;
Yu, J. .
NUCLEAR FUSION, 2007, 47 (09) :1086-1091
[9]   VERTICAL DISPLACEMENT EVENTS AND HALO CURRENTS [J].
GRUBER, O ;
LACKNER, K ;
PAUTASSO, G ;
SEIDEL, U ;
STREIBL, B .
PLASMA PHYSICS AND CONTROLLED FUSION, 1993, 35 :B191-B204
[10]   Chapter 3:: MHD stability, operational limits and disruptions [J].
Hender, T. C. ;
Wesley, J. C. ;
Bialek, J. ;
Bondeson, A. ;
Boozer, A. H. ;
Buttery, R. J. ;
Garofalo, A. ;
Goodman, T. P. ;
Granetz, R. S. ;
Gribov, Y. ;
Gruber, O. ;
Gryaznevich, M. ;
Giruzzi, G. ;
Guenter, S. ;
Hayashi, N. ;
Helander, P. ;
Hegna, C. C. ;
Howell, D. F. ;
Humphreys, D. A. ;
Huysmans, G. T. A. ;
Hyatt, A. W. ;
Isayama, A. ;
Jardin, S. C. ;
Kawano, Y. ;
Kellman, A. ;
Kessel, C. ;
Koslowski, H. R. ;
La Haye, R. J. ;
Lazzaro, E. ;
Liu, Y. Q. ;
Lukash, V. ;
Manickam, J. ;
Medvedev, S. ;
Mertens, V. ;
Mirnov, S. V. ;
Nakamura, Y. ;
Navratil, G. ;
Okabayashi, M. ;
Ozeki, T. ;
Paccagnella, R. ;
Pautasso, G. ;
Porcelli, F. ;
Pustovitov, V. D. ;
Riccardo, V. ;
Sato, M. ;
Sauter, O. ;
Schaffer, M. J. ;
Shimada, M. ;
Sonato, P. ;
Strait, E. J. .
NUCLEAR FUSION, 2007, 47 (06) :S128-S202