A reaction-convection-diffusion model for PEM fuel cells

被引:7
作者
Blanco-Cocom, Luis [1 ]
Botello-Rionda, Salvador [1 ]
Ordonez, L. C. [2 ]
Ivvan Valdez, S. [3 ]
机构
[1] Ctr Invest Matemat AC, Jalisco S-N,Apartado Postal 402, Guanajuato 36023, Gto, Mexico
[2] Ctr Invest Cient Yucatan, Unidad Energia Renovable, Parque Cient Tecnol Yucatan, Merida 97302, Yucatan, Mexico
[3] CENTROGEO AC, CONACYT Ctr Invest Ciencias Informac Geoespacial, Parque Tecnol San Fandila, Queretaro 76703, Mexico
关键词
PEM fuel cell; RCD mathematical model; Macro-homogeneous model; Singularly perturbed differential equations; OPTIMAL PARAMETERS ESTIMATION; OPTIMIZATION ALGORITHM; CATALYST LAYERS;
D O I
10.1016/j.finel.2021.103703
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a novel 1D singularly perturbed reaction-convection-diffusion mathematical model, with non-linear coefficients (SP-RCD model), for the physical modeling of a fuel cell. The model is a generalization of the macro-homogeneous model, revisited from the point of view of singularly perturbed differential equations. To solve the system of coupled second-order differential equations, we propose a numerical scheme based on vanishing the artificial diffusion of the finite element method within an iterative fixed-point algorithm. We also propose an adaptive Shishkin mesh, as a function of the derivative of the current density in the subdomain with a fast-growing slope. Results of the proposed SP-RCD model are comparable to those of the macro-homogeneous model. In addition, it describes the oxygen concentration profiles in the thickness of the cathode catalytic layer under different operating currents and represents, with enough precision, the experimental polarization curve reported in the literature.
引用
收藏
页数:10
相关论文
共 37 条
[1]  
[Anonymous], 2017, Numerical Methods and Analysis of Multiscale Problems, DOI DOI 10.1007/978-3-319-50866-5
[2]  
[Anonymous], 2015, ARXIV150201506
[3]  
Axelsson O., 1994, Iterative Solution Methods, DOI [10.1017/CBO9780511624100, DOI 10.1017/CBO9780511624100]
[4]   On the natural stabilization of convection dominated problems using high order Bubnov-Galerkin finite elements [J].
Cai, Q. ;
Kollmannsberger, S. ;
Sala-Lardies, E. ;
Huerta, A. ;
Rank, E. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 66 (12) :2545-2558
[5]   Systematic parameter estimation for PEM fuel cell models [J].
Carnes, B ;
Djilali, N .
JOURNAL OF POWER SOURCES, 2005, 144 (01) :83-93
[6]   Iterative Methods for Fixed Point Problems in Hilbert Spaces Preface [J].
Cegielski, Andrzej .
ITERATIVE METHODS FOR FIXED POINT PROBLEMS IN HILBERT SPACES, 2012, 2057 :IX-+
[7]   Experimental measurement of effective diffusion coefficient of gas diffusion layer/microporous layer in PEM fuel cells [J].
Chan, Carl ;
Zamel, Nada ;
Li, Xianguo ;
Shen, Jun .
ELECTROCHIMICA ACTA, 2012, 65 :13-21
[8]   Seeker optimization algorithm for global optimization: A case study on optimal modelling of proton exchange membrane fuel cell (PEMFC) [J].
Dai, Chaohua ;
Chen, Weirong ;
Cheng, Zhanli ;
Li, Qi ;
Jiang, Zhiling ;
Jia, Junbo .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2011, 33 (03) :369-376
[9]  
Efendiev M., 2007, MATH MODELS PHENOMEN
[10]  
Farrell P. A., 2000, ROBUST COMPUTATIONAL, DOI 10.1201/9781482285727