Option pricing by mathematical programming

被引:7
作者
Flam, S. D. [1 ]
机构
[1] Univ Bergen, Dept Econ, N-5007 Bergen, Norway
关键词
asset pricing; combinatorial optimization; totally unimodular matrices; AMERICAN OPTIONS; DUALITY; UTILITY;
D O I
10.1080/02331930701779054
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Financial options typically incorporate times of exercise. Alternatively, they embody set-up costs or indivisibilities. Such features lead to planning problems with integer decision variables. Provided the sample space be finite, it is shown here that integrality constraints can often be relaxed. In fact, simple mathematical programming, aimed at arbitrage or replication, may find optimal exercise, and bound or identify option prices. When the asset market is incomplete, the bounds stem from non-linear pricing functionals.
引用
收藏
页码:165 / 182
页数:18
相关论文
共 31 条
[21]   On bridging the gap between stochastic integer programming and MIP solver technologies [J].
Parija, GR ;
Ahmed, S ;
King, AJ .
INFORMS JOURNAL ON COMPUTING, 2004, 16 (01) :73-83
[22]  
Pennanen T., 2004, Arbitrage pricing of American contingent claims in incomplete markets - a convex optimization approach
[23]  
PLOSKA SR, 1997, INTRO MATH FINANCE
[24]   OPTION BOUNDS WITH FINITE REVISION OPPORTUNITIES [J].
RITCHKEN, PH ;
KUO, S .
JOURNAL OF FINANCE, 1988, 43 (02) :301-308
[25]  
ROCKAFELLAR RT, 1984, NETWORK FLOWS MONTRO
[26]   Monte Carlo valuation of American options [J].
Rogers, LCG .
MATHEMATICAL FINANCE, 2002, 12 (03) :271-286
[27]  
Ross S. M., 1983, Introduction to stochastic dynamic programming
[28]  
SANDMANN K, 1993, MATH FINANC, V3, P201
[29]  
Williams H.P., 1978, Model Building in Mathematical Programming, V1st
[30]  
WOLFSTETTER E, 1993, TOPICS MICROECONOMIC