Option pricing by mathematical programming

被引:7
作者
Flam, S. D. [1 ]
机构
[1] Univ Bergen, Dept Econ, N-5007 Bergen, Norway
关键词
asset pricing; combinatorial optimization; totally unimodular matrices; AMERICAN OPTIONS; DUALITY; UTILITY;
D O I
10.1080/02331930701779054
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Financial options typically incorporate times of exercise. Alternatively, they embody set-up costs or indivisibilities. Such features lead to planning problems with integer decision variables. Provided the sample space be finite, it is shown here that integrality constraints can often be relaxed. In fact, simple mathematical programming, aimed at arbitrage or replication, may find optimal exercise, and bound or identify option prices. When the asset market is incomplete, the bounds stem from non-linear pricing functionals.
引用
收藏
页码:165 / 182
页数:18
相关论文
共 31 条
[1]   Primal-dual simulation algorithm for pricing multidimensional American options [J].
Andersen, L ;
Broadie, M .
MANAGEMENT SCIENCE, 2004, 50 (09) :1222-1234
[2]  
Aubin J.P., 1994, Differential Inclusions
[3]  
BIRGE J, 1997, INTRODUCTION STOCHAS
[4]   Convergence of utility indifference prices to the superreplication price [J].
Carassus, Laurence ;
Rasonyi, Miklos .
MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2006, 64 (01) :145-154
[5]  
Denneberg D., 1994, Theory and Decision Library Series B: Mathematical and Statistical Methods, V1st
[6]  
Dermody JC., 1991, MATH FINANC, V1, P31, DOI [10.1111/j.1467-9965.1991.tb00003.x, DOI 10.1111/J.1467-9965.1991.TB00003.X]
[7]  
Dixit K., 1994, INVESTMENT UNCERTAIN
[8]  
Duffie D., 1992, Dynamic Asset Pricing Theory
[9]   Scenarios for multistage stochastic programs [J].
Dupacová, J ;
Consigli, G ;
Wallace, SW .
ANNALS OF OPERATIONS RESEARCH, 2000, 100 (1-4) :25-53
[10]  
EVSTIGNEEV IV, 2001, STOCHASTIC PROGRAMMI, V5