On Recognizability by Spectrum of Finite Simple Groups of Types Bn, Cn, and 2Dn for n=2k

被引:6
作者
Vasil'ev, A. V. [1 ]
Gorshkov, I. B. [2 ]
Grechkoseeva, M. A. [1 ]
Kondrat'ev, A. S. [3 ]
Staroletov, A. M. [2 ]
机构
[1] Russian Acad Sci, Siberian Branch, Sobolev Inst Math, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
[3] Russian Acad Sci, Inst Math & Mech, Ural Div, Ekaterinburg 620219, Russia
基金
俄罗斯基础研究基金会;
关键词
finite simple group; spectrum of a group; prime graph; recognition by spectrum; orthogonal group; symplectic group;
D O I
10.1134/S0081543809070207
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The spectrum of a finite group is the set of its element orders. A group is said to be recognizable (by spectrum) if it is isomorphic to any finite group that has the same spectrum. A nonabelian simple group is called quasi-recognizable if every finite group with the same spectrum possesses a unique nonabelian composition factor and this factor is isomorphic to the simple group in question. We consider the problem of recognizability and quasi-recognizability for finite simple groups of types B-n, C-n, and D-2(n) with n = 2(k).
引用
收藏
页码:S218 / S233
页数:16
相关论文
共 24 条
[1]  
Alekseeva O. A., 2003, SIB MAT ZH, V44, P241
[2]  
[Anonymous], 2005, ALGEBR LOG+
[3]  
[Anonymous], 1870, NOUV ANN MATH
[4]  
Buturlakin A. A., 2008, PREPRINT IM SO RAN
[5]  
Buturlakin A.A., 2007, Algebra Logika, V46, P129
[6]  
CARTER RW, 1981, P LOND MATH SOC, V42, P1
[7]  
Gorenstein D., 1998, MATH SURVEYS MONOGRA
[8]   Recognition by spectrum for finite simple groups of Lie type [J].
Grechkoseeva, Maria A. ;
Shi, Wujie ;
Vasilev, Andrey V. .
FRONTIERS OF MATHEMATICS IN CHINA, 2008, 3 (02) :275-285
[9]   Finite simple unisingular groups of Lie type [J].
Guralnick, RM ;
Tiep, PH .
JOURNAL OF GROUP THEORY, 2003, 6 (03) :271-310
[10]   Prime power graphs for groups of Lie type [J].
Kantor, WM ;
Seress, K .
JOURNAL OF ALGEBRA, 2002, 247 (02) :370-434