Similarity of users' (content-based) preference models for Collaborative filtering in few ratings scenario

被引:24
作者
Eckhardt, Alan [1 ]
机构
[1] Charles Univ Prague, Dept Software Engn, Prague, Czech Republic
关键词
Collaborative filtering; Preference learning; Machine learning;
D O I
10.1016/j.eswa.2012.01.177
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Collaborative filtering is an efficient way to find best objects to recommend. This technique is particularly useful when there is a lot of users that rated a lot of objects. In this paper, we propose a method that improve the Collaborative filtering in situations, where the number of ratings or users is small. The proposed approach is experimentally evaluated on real datasets with very convincing results. (C) 2012 Published by Elsevier Ltd.
引用
收藏
页码:11511 / 11516
页数:6
相关论文
共 17 条
[1]  
Agarwal D, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P19
[2]  
[Anonymous], 2004, P 21 INT C MACHINE L
[3]  
Claypool Mark, 1999, COMPUTING SURVEYS CS
[4]  
Clemen R., 1996, Making hard decisions, V2nd
[5]  
Eckhardt A, 2007, IEEE INT CONF FUZZY, P1106
[6]  
Eckhardt A, 2007, CEUR WORKSHOP PROCEE, V235, P103
[7]   USING COLLABORATIVE FILTERING TO WEAVE AN INFORMATION TAPESTRY [J].
GOLDBERG, D ;
NICHOLS, D ;
OKI, BM ;
TERRY, D .
COMMUNICATIONS OF THE ACM, 1992, 35 (12) :61-70
[8]   Eigentaste: A constant time collaborative filtering algorithm [J].
Goldberg, K ;
Roeder, T ;
Gupta, D ;
Perkins, C .
INFORMATION RETRIEVAL, 2001, 4 (02) :133-151
[9]  
Kamishima T., 2003, P KDD 03, P583, DOI DOI 10.1145/956750.956823
[10]  
Ko S, 2002, LECT NOTES COMPUT SC, V2455, P244