On externally complete subsets and common fixed points in partially ordered sets

被引:2
作者
Abu-Sbeih, Mohammad Z. [1 ]
Khamsi, Mohamed A. [1 ,2 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
[2] Univ Texas El Paso, Dept Math Sci, El Paso, TX 79968 USA
关键词
partially ordered sets; order preserving mappings; order trees; hyperconvex metric spaces; fixed point; BANACH OPERATOR PAIRS; APPROXIMATION; MAPPINGS; THEOREMS; SPACES;
D O I
10.1186/1687-1812-2011-97
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, we introduce the concept of externally complete ordered sets. We discuss the properties of such sets and characterize them in ordered trees. We also prove some common fixed point results for order preserving mappings. In particular, we introduce for the first time the concept of Banach Operator pairs in partially ordered sets and prove a common fixed point result which generalizes the classical De Marr's common fixed point theorem. 2000 MSC: primary 06F30; 46B20; 47E10.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 16 条
[1]   A selection theorem in metric trees [J].
Aksoy, A. G. ;
Khamsi, M. A. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (10) :2957-2966
[2]  
Aronszajn N., 1956, Pacific J. Math., V6, P405
[3]  
Baillon J. B., 1988, FIXED POINT THEORY I, V72, P11, DOI DOI 10.1090/CONM/072/956475
[4]   Common fixed-points for Banach operator pairs in best approximation [J].
Chen, Jianren ;
Li, Zhongkai .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 336 (02) :1466-1475
[5]   COMMON FIXED POINTS FOR COMMUTING CONTRACTION MAPPINGS [J].
DEMARR, R .
PACIFIC JOURNAL OF MATHEMATICS, 1963, 13 (04) :1139-&
[6]   Common Fixed Points for Multimaps in Metric Spaces [J].
Espinola, Rafa ;
Hussain, Nawab .
FIXED POINT THEORY AND APPLICATIONS, 2010,
[7]   Common fixed points in best approximation for Banach operator pairs with Ciric type I-contractions [J].
Hussain, N. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (02) :1351-1363
[8]   Banach operator pairs and common fixed points in hyperconvex metric spaces [J].
Hussain, N. ;
Khamsi, M. A. ;
Latif, A. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) :5956-5961
[9]  
Jawhari E., 1986, CONT MATH, V57, P175
[10]   Fixed point theorems in logic programming [J].
Khamsi, MA ;
Misane, D .
ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 1997, 21 (2-4) :231-243