On the Gauss map of complete CMC hypersurfaces in the hyperbolic space

被引:14
作者
Aquino, C. F. [2 ]
de Lima, H. F. [1 ]
机构
[1] Univ Fed Campina Grande, Dept Matemat & Estat, BR-58109970 Campina Grande, Paraiba, Brazil
[2] Univ Fed Piaui, Dept Matemat, BR-64049550 Teresina, Piaui, Brazil
关键词
Hyperbolic space; Complete hypersurfaces; Mean curvature; Gauss map; Hyperbolic cylinders; CONSTANT MEAN-CURVATURE; COMPLETE RIEMANNIAN MANIFOLDS; SITTER SPACE; INEQUALITY; GRAPHS;
D O I
10.1016/j.jmaa.2011.08.046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, as suitable applications of the so-called Omori-Yau generalized maximum principle, we obtain rigidity results concerning to complete hypersurfaces with constant mean curvature in the hyperbolic space, under appropriated restrictions on their Gauss image. Furthermore, by supposing a linear dependence between support functions naturally attached to such hypersurfaces, we establish a characterization theorem. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:862 / 869
页数:8
相关论文
共 16 条
[1]   Integral formulas for compact space-like hypersurfaces in de Sitter space:: Applications to the case of constant higher order mean curvature [J].
Aledo, JA ;
Alías, LJ ;
Romero, A .
JOURNAL OF GEOMETRY AND PHYSICS, 1999, 31 (2-3) :195-208
[2]   A characterization of quadric constant mean curvature hypersurfaces of spheres [J].
Alias, Luis J. ;
Brasil, Aldir, Jr. ;
Perdomo, Oscar .
JOURNAL OF GEOMETRIC ANALYSIS, 2008, 18 (03) :687-703
[3]  
Alías LJ, 2006, COMMENT MATH HELV, V81, P653
[4]   Complete Vertical Graphs with Constant Mean Curvature in Semi-Riemannian Warped Products [J].
Caminha, A. ;
de Lima, H. F. .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2009, 16 (01) :91-105
[5]  
Caminha A., 2006, KODAI MATH J, V29, P185
[6]  
GARDING L, 1959, J MATH MECH, V8, P957
[7]  
Huber A., 1957, Comment. Math. Helv., V32, P13, DOI 10.1007/BF02564570
[8]   LOCAL RIGIDITY THEOREMS FOR MINIMAL HYPERSURFACES [J].
LAWSON, HB .
ANNALS OF MATHEMATICS, 1969, 89 (01) :187-&
[9]   Existence of constant mean curvature graphs in hyperbolic space [J].
López, R ;
Montiel, S .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1999, 8 (02) :177-190