Vertex-distinguishing total coloring of graphs

被引:0
|
作者
Zhang, Zhongfu [1 ,2 ]
Qiu, Pengxiang [1 ]
Xu, Baogen [3 ]
Li, Jingwen [4 ]
Chen, Xiangen [2 ]
Yao, Bing [2 ]
机构
[1] Lanzhou Jiaotong Univ, Inst Appl Math, Lanzhou 730070, Peoples R China
[2] NW Normal Univ, Coll Math & Informat Sci, Lanzhou 730070, Peoples R China
[3] E China Jiaotong Univ, Dept Math, Nanchang 330013, Peoples R China
[4] Lanzhou Jiaotong Univ, Coll Elect & Informat Engn, Lanzhou 730070, Peoples R China
关键词
proper edge coloring; vertex-clistinguishing; proper total coloring; chromatic number;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simple and connected graph of order p >= 2. A proper k-total-coloring of a graph G is a mapping f from V(G) U E(G) into {1, 2, center dot center dot center dot, k} such that every two adjacent or incident elements of V(G) boolean OR E(G) are assigned different colors. Let C-f (u)=f(u) boolean OR{f(uv) vertical bar uv is an element of E(G)} be the neighbor color-set of u, if C-f (u)not equal C-f (v) for any two vertices u and v of V(G), we say f a vertex-distinguishing proper k-total-coloring of G, or a k-VDT-coloring of G for short. The minimal number of all over k-VDT-colorings of G is denoted by chi(vt)(G), and it is called the VDTC chromatic number of G. For some special families of the complete graph K, complete bipartite graph K-m,K-n, path P-m and circle C-m, etc., we get their VDTC chromatic numbers and propose a conjecture in this article.
引用
收藏
页码:33 / 45
页数:13
相关论文
共 50 条
  • [21] Adjacent vertex-distinguishing edge coloring of graphs with maximum degree Δ
    Hocquard, Herve
    Montassier, Mickael
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2013, 26 (01) : 152 - 160
  • [22] On the adjacent vertex-distinguishing acyclic edge coloring of some graphs
    Shiu Wai Chee
    Chan Wai Hong
    Zhang Zhong-fu
    Bian Liang
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2011, 26 (04) : 439 - 452
  • [23] On the adjacent vertex-distinguishing acyclic edge coloring of some graphs
    Wai Chee Shiu
    Wai Hong Chan
    Zhong-fu Zhang
    Liang Bian
    Applied Mathematics-A Journal of Chinese Universities, 2011, 26 : 439 - 452
  • [24] On the adjacent vertex-distinguishing acyclic edge coloring of some graphs
    SHIU Wai Chee
    AppliedMathematics:AJournalofChineseUniversities(SeriesB), 2011, 26 (04) : 439 - 452
  • [25] Vertex-Distinguishing E-Total Colorings of Graphs
    Chen, Xiang'en
    Zu, Yue
    Xu, Jin
    Wang, Zhiwen
    Yao, Bing
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2011, 36 (08) : 1485 - 1500
  • [26] Adjacent vertex-distinguishing edge coloring of 2-degenerate graphs
    Yi Wang
    Jian Cheng
    Rong Luo
    Gregory Mulley
    Journal of Combinatorial Optimization, 2016, 31 : 874 - 880
  • [27] Vertex-Distinguishing E-Total Colorings of Graphs
    Xiang’en Chen
    Yue Zu
    Jin Xu
    Zhiwen Wang
    Bing Yao
    Arabian Journal for Science and Engineering, 2011, 36 : 1485 - 1500
  • [28] Vertex-distinguishing I-total colorings of graphs
    Chen, Xiang'en
    Li, Ze-peng
    UTILITAS MATHEMATICA, 2014, 95 : 319 - 327
  • [29] A note on the vertex-distinguishing proper coloring of graphs with large minimum degree
    Bazgan, C
    Harkat-Benhamdine, A
    Li, H
    Wozniak, M
    DISCRETE MATHEMATICS, 2001, 236 (1-3) : 37 - 42
  • [30] Adjacent vertex-distinguishing edge coloring of 2-degenerate graphs
    Wang, Yi
    Cheng, Jian
    Luo, Rong
    Mulley, Gregory
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 31 (02) : 874 - 880