Vertex-distinguishing total coloring of graphs

被引:0
|
作者
Zhang, Zhongfu [1 ,2 ]
Qiu, Pengxiang [1 ]
Xu, Baogen [3 ]
Li, Jingwen [4 ]
Chen, Xiangen [2 ]
Yao, Bing [2 ]
机构
[1] Lanzhou Jiaotong Univ, Inst Appl Math, Lanzhou 730070, Peoples R China
[2] NW Normal Univ, Coll Math & Informat Sci, Lanzhou 730070, Peoples R China
[3] E China Jiaotong Univ, Dept Math, Nanchang 330013, Peoples R China
[4] Lanzhou Jiaotong Univ, Coll Elect & Informat Engn, Lanzhou 730070, Peoples R China
关键词
proper edge coloring; vertex-clistinguishing; proper total coloring; chromatic number;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simple and connected graph of order p >= 2. A proper k-total-coloring of a graph G is a mapping f from V(G) U E(G) into {1, 2, center dot center dot center dot, k} such that every two adjacent or incident elements of V(G) boolean OR E(G) are assigned different colors. Let C-f (u)=f(u) boolean OR{f(uv) vertical bar uv is an element of E(G)} be the neighbor color-set of u, if C-f (u)not equal C-f (v) for any two vertices u and v of V(G), we say f a vertex-distinguishing proper k-total-coloring of G, or a k-VDT-coloring of G for short. The minimal number of all over k-VDT-colorings of G is denoted by chi(vt)(G), and it is called the VDTC chromatic number of G. For some special families of the complete graph K, complete bipartite graph K-m,K-n, path P-m and circle C-m, etc., we get their VDTC chromatic numbers and propose a conjecture in this article.
引用
收藏
页码:33 / 45
页数:13
相关论文
共 50 条
  • [1] D(β)-vertex-distinguishing total coloring of graphs
    ZHANG Zhongfu
    College of Mathematics and Information Science
    College of Information and Electrical Engineering
    ScienceinChina(SeriesA:Mathematics), 2006, (10) : 1430 - 1440
  • [2] D(β)-vertex-distinguishing total coloring of graphs
    Zhang Zhongfu
    Li Jingwen
    Chen Xiang'en
    Yao Bing
    Wang Wenjie
    Qiu Pengxiang
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2006, 49 (10): : 1430 - 1440
  • [3] General Vertex-Distinguishing Total Coloring of Graphs
    Liu, Chanjuan
    Zhu, Enqiang
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [4] D(β)-vertex-distinguishing total coloring of graphs
    Zhongfu Zhang
    Jingwen Li
    Xiang’en Chen
    Bing Yao
    Wenjie Wang
    Pengxiang Qiu
    Science in China Series A: Mathematics, 2006, 49 : 1430 - 1440
  • [5] Incidence adjacent vertex-distinguishing total coloring of graphs
    Institute of Applied Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, China
    不详
    Proc. - Int. Conf. Comput. Intell. Softw. Eng., CiSE, 1600,
  • [6] A note on the vertex-distinguishing proper total coloring of graphs
    Li, Jingwen
    Wang, Zhiwen
    Zhang, Zhongfu
    Zhu, Enqiang
    Wan, Fei
    Wang, Hongjie
    ARS COMBINATORIA, 2010, 96 : 421 - 423
  • [7] General vertex-distinguishing total coloring of complete bipartite graphs
    Yang, Hong
    ARS COMBINATORIA, 2016, 125 : 371 - 379
  • [8] 2-distance vertex-distinguishing total coloring of graphs
    Hu, Yafang
    Wang, Weifan
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2018, 10 (02)
  • [9] The (adjacent) vertex-distinguishing total coloring of the Mycielski graphs and the Cartesian product graphs
    Sun, Yanli
    Sung, Lei
    DISCRETE GEOMETRY, COMBINATORICS AND GRAPH THEORY, 2007, 4381 : 200 - +
  • [10] TWO-DISTANCE VERTEX-DISTINGUISHING TOTAL COLORING OF SUBCUBIC GRAPHS
    He, Zhengyue
    Liang, Li
    Gao, Wei
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2023, 24 (02): : 113 - 120