Machine-Learning Model Prediction of Ionic Liquids Melting Points

被引:13
|
作者
Acar, Zafer [1 ]
Nguyen, Phu [2 ]
Lau, Kah Chun [1 ]
机构
[1] Calif State Univ Northridge, Dept Phys & Astron, Los Angeles, CA 91330 USA
[2] Calif State Univ Northridge, Dept Comp Sci, Los Angeles, CA 91330 USA
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 05期
关键词
ionic liquids; deep-learning; chemoinformatics; melting points; SET;
D O I
10.3390/app12052408
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ionic liquids (ILs) have great potential for application in energy storage and conversion devices. They have been identified as promising electrolytes candidates in various battery systems. However, the practical application of many ionic liquids remains limited due to the unfavorable melting points (T-m) which constrain the operating temperatures of the batteries and exhibit unfavorable transport property. To fine tune the T-m of ILs, a systematic study and accurate prediction of T-m of ILs is highly desirable. However, the T-m of an IL can change considerably depending on the molecular structures of the anion and cation and their combination. Thus, a fine control in T-m of ILs can be challenging. In this study, we employed a deep-learning model to predict the T-m of various ILs that consist of different cation and anion classes. Based on this model, a prediction of the melting point of ILs can be made with a reasonably high accuracy, achieving an R-2 score of 0.90 with RMSE of ~32 K, and the T-m of ILs are mostly dictated by some important molecular descriptors, which can be used as a set of useful design rules to fine tune the T-m of ILs.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Advancing interpretability of machine-learning prediction models
    Trenary, Laurie
    DelSole, Timothy
    ENVIRONMENTAL DATA SCIENCE, 2022, 1
  • [42] Anxiety onset in adolescents: a machine-learning prediction
    Alice V. Chavanne
    Marie Laure Paillère Martinot
    Jani Penttilä
    Yvonne Grimmer
    Patricia Conrod
    Argyris Stringaris
    Betteke van Noort
    Corinna Isensee
    Andreas Becker
    Tobias Banaschewski
    Arun L. W. Bokde
    Sylvane Desrivières
    Herta Flor
    Antoine Grigis
    Hugh Garavan
    Penny Gowland
    Andreas Heinz
    Rüdiger Brühl
    Frauke Nees
    Dimitri Papadopoulos Orfanos
    Tomáš Paus
    Luise Poustka
    Sarah Hohmann
    Sabina Millenet
    Juliane H. Fröhner
    Michael N. Smolka
    Henrik Walter
    Robert Whelan
    Gunter Schumann
    Jean-Luc Martinot
    Eric Artiges
    Molecular Psychiatry, 2023, 28 : 639 - 646
  • [43] A machine-learning algorithm for wind gust prediction
    Sallis, P. J.
    Claster, W.
    Hernandez, S.
    COMPUTERS & GEOSCIENCES, 2011, 37 (09) : 1337 - 1344
  • [44] Anxiety onset in adolescents: a machine-learning prediction
    Chavanne, Alice
    Paillere Martinot, Marie Laure
    Penttilae, Jani
    Grimmer, Yvonne
    Conrod, Patricia
    Stringaris, Argyris
    van Noort, Betteke
    Isensee, Corinna
    Becker, Andreas
    Banaschewski, Tobias
    Bokde, Arun L. W.
    Desrivieres, Sylvane
    Flor, Herta
    Grigis, Antoine
    Garavan, Hugh
    Gowland, Penny
    Heinz, Andreas
    Bruehl, Ruediger
    Nees, Frauke
    Orfanos, Dimitri Papadopoulos
    Paus, Tomas
    Poustka, Luise
    Hohmann, Sarah S.
    Millenet, Sabina
    Froehner, Juliane
    Smolka, Michael
    Walter, Henrik
    Whelan, Robert
    Schumann, Gunter
    Martinot, Jean-Luc
    Artiges, Eric
    MOLECULAR PSYCHIATRY, 2023, 28 (02) : 639 - 646
  • [45] The effect of descriptor choice in machine learning models for ionic liquid melting point prediction
    Low, Kaycee
    Kobayashi, Rika
    Izgorodina, Ekaterina I.
    JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (10):
  • [46] Application of interpretable machine learning models to improve the prediction performance of ionic liquids toxicity
    Fan, Dingchao
    Xue, Ke
    Zhang, Runqi
    Zhu, Wenguang
    Zhang, Hongru
    Qi, Jianguang
    Zhu, Zhaoyou
    Wang, Yinglong
    Cui, Peizhe
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 908
  • [47] Prediction of ionic liquids toxicity using machine learning models for application to gas hydrate
    Abdullah, Nurul Hannah
    Zaini, Dzulkarnain
    Lal, Bhajan
    PROCESS SAFETY PROGRESS, 2024, 43 (S1) : S199 - S212
  • [48] Prediction of CO2 solubility in ionic liquids using machine learning methods
    Song, Zhen
    Shi, Huaiwei
    Zhang, Xiang
    Zhou, Teng
    CHEMICAL ENGINEERING SCIENCE, 2020, 223
  • [49] Coupling machine-learning techniques with SWAT model for instantaneous peak flow prediction
    Senent-Aparicio, Javier
    Jimeno-Saez, Patricia
    Bueno-Crespo, Andres
    Perez-Sanchez, Julio
    Pulido-Velazquez, David
    BIOSYSTEMS ENGINEERING, 2019, 177 : 67 - 77
  • [50] Machine-learning model for the prediction of preeclampsia - a step toward personalized risk assessment
    Shtar, Guy
    Rokach, Lior
    Novack, Victor
    Novack, Lena
    Than, Gabor
    Laivouri, Hannele
    Farina, Antonio
    Hadar, Amnon G.
    Erez, Ofer
    AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2022, 226 (01) : S171 - S171